Самодельная лампа из светодиодов

Как сделать простую светодиодную лампу своими руками

Светодиодная лампа на 220 вольт позволяет сэкономить в 1,5–2 раза больше электроэнергии, чем лампа дневного света, и в 10 раз больше, чем лампа накаливания. К тому же при сборке из перегоревшего светильника расходы на изготовление такой лампы будут значительно ниже. Светодиодная лампа своими руками собирается достаточно просто, хотя работать с высоким напряжением вы можете только при наличии у вас соответствующей квалификации.

Преимущества самодельной лампы

В магазине можно найти множество видов ламп. Каждый тип имеет свой недостаток и преимущество. Лампы накаливания постепенно сдают свои позиции из-за высокого потребления энергии, низкой светоотдачи, несмотря на высокий индекс цветопередачи. По сравнению с ними люминесцентные источники света — настоящее чудо. Энергосберегающие лампы — их более современная модернизация, позволившая применять преимущества люминесцентного света в самых распространенных светильниках, с цоколями Е27, лишенная неприятного мерцания старых представителей этого семейства.

Сравнительная таблица ламп

Но и у ламп дневного света есть недостатки. Они быстро выходят из строя из-за частого включения-выключения, к тому же содержащиеся в трубках пары ядовиты, а сама конструкция требует специальной утилизации. По сравнению с ними лампа на светодиодах (LED) — вторая революция в области освещения. Они ещё более экономичны, не требуют особой утилизации и работают в 5–10 раза дольше.

У светодиодных ламп есть один, но существенный недостаток — они самые дорогие. Чтобы снизить этот минус до минимума или обернуть его в плюс, потребуется соорудить её из светодиодной ленты своими руками. При этом стоимость источника света становится ниже, чем у люминесцентных аналогов.

Самодельная светодиодная лампа обладает рядом преимуществ:

  • срок службы устройства при правильной сборке составляет рекордные 100 000 часов;
  • по эффективности ватт/люмен они также превосходят все аналоги;
  • стоимость самодельной лампы не выше, чем у люминесцентной.

Разумеется, есть один недостаток — отсутствие гарантий на изделие, который должен компенсироваться точным соблюдением инструкций и мастерством электрика.

Материалы для сборки

Различные виды люминесцентных ламп

Способов создания лампы своими руками великое множество. Наиболее распространены методы с использованием старого цоколя от перегоревшей люминесцентной лампы. Такой ресурс найдется у каждого в доме, поэтому проблем с поиском не будет. Помимо этого понадобятся:

  1. Цоколь от перегоревшего изделия.
  2. Непосредственно ЛЕД. Они продаются в виде светодиодных лент или отдельных светодиодов НК6. Каждый элемент имеет силу тока примерно 100–120 мА и напряжение около 3–3,3 Вольта.
  3. Потребуется диодный мост или выпрямительные диоды 1N4007.
  4. Нужен предохранитель, который можно найти в цоколе перегоревшей лампы.
  5. Конденсатор. Его емкость, напряжение и другие параметры выбираются в зависимости от электрической схемы для сборки и количества светодиодов в ней.
  6. В большинстве случаев потребуется каркас, на который будут крепиться светодиоды. Каркас можно сделать из пластика или подобного материала. Главное требование — не должен быть металлическим, токопроводящим и должен быть теплоустойчивым.
  7. Для надежного прикрепления светодиодов к каркасу потребуется суперклей или жидкие гвозди (последние предпочтительней).

Один–два элемента из вышеперечисленного списка могут не пригодиться при некоторых схемах, в других случаях могут, наоборот, добавляться новые звенья цепи (драйвера, электролиты). Поэтому список необходимых материалов нужно составлять в каждом конкретном случае индивидуально.

Собираем лампу из светодиодной ленты

Разберем пошагово создание источника света на 220 В из светодиодной ленты. Чтобы решиться использовать новшество на кухне, достаточно вспомнить, что собранные своими руками светодиодные лампы существенно выгодней люминесцентных аналогов. Они живут в 10 раз дольше, а потребляют в 2–3 раза меньше энергии при одинаковом уровне освещения.

  1. Для конструирования понадобятся две перегоревшие люминесцентные лампы длиной полметра и мощностью 13 ватт. Покупать новые смысла нет, лучше найти старые и неработающие, но не сломанные и без трещин.
  2. Далее идем в магазин и покупаем светодиодную ленту. Выбор большой, поэтому к приобретению подойдите ответственно. Желательно покупать ленты с чистым белым или естественным светом, он не изменяет оттенки окружающих предметов. В таких лентах светодиоды собраны в группы по 3 штуки. Напряжение одной группы 12 вольт, а мощность 14 ватт на метровую ленту.
  3. Затем нужно разобрать люминесцентные лампы на составные части. Осторожно! Не повредите провода, а также не разбейте трубку, иначе ядовитые пары вырвутся наружу и придется проводить уборку, как после разбитого ртутного градусника. Извлеченные внутренности не выбрасывайте, они пригодятся в дальнейшем. Ниже представлена схема светодиодной ленты, которую мы купили. В ней ЛЕД подключены параллельно по 3 штуки в группе. Обратите внимание, что такая схема нам не подходит.
  4. Поэтому нужно разрезать ленту на участки по 3 диода в каждом и достать дорогие и бесполезные преобразователи. Разрезать ленту удобней кусачками или большими и крепкими ножницами. После спаивания проволочек должна получиться схема, приведенная ниже. В итоге должно получиться 66 светодиодов или 22 группы по 3 ЛЕД в каждой, подключенные параллельно по всей длине. Расчеты просты. Так как нам понадобится преобразовать переменный ток в постоянный, то стандартное напряжение 220 Вольт в электрической сети нужно увеличить до 250. Необходимость «накинуть» напряжение связана с процессом выпрямления.
  5. Для выяснения количества секций светодиодов нужно разделить 250 Вольт на 12 Вольт (напряжение для одной группы по 3 штуки). В итоге получим 20,8(3), округлив в большую сторону, получаем 21 группу. Здесь желательно добавить ещё одну группу, поскольку общее количество светодиодов придется разделить на 2 лампы, а для этого нужно четное число. К тому же добавив ещё одну секцию, сделаем общую схему безопаснее.
  6. Нам понадобится выпрямитель постоянного тока, именно поэтому нельзя выбрасывать извлеченные внутренности люминесцентной лампы. Для этого достаем преобразователь, при помощи кусачек удаляем конденсатор из общей цепи. Сделать это достаточно просто, поскольку он расположен отдельно от диодов, то достаточно отломить плату. На схеме показано, что должно в итоге получиться, более подробно.
  7. Далее при помощи пайки и суперклея нужно собрать всю конструкцию. Даже не пытайтесь уместить все 22 секции в один светильник. Выше говорилось, что нужно специально найти 2 полуметровые лампы, поскольку разместить все светодиоды в одной просто невозможно. Также не нужно рассчитывать на самоклеющийся слой на обратной стороне ленты. Он не протянет долго, поэтому светодиоды нужно закрепить при помощи суперклея или жидких гвоздей.

Подведем итоги и выясним достоинства собранного изделия:

  • Количество света от получившихся светодиодных ламп в 1,5 раза больше, чем у люминесцентных аналогов.
  • Потребляемая мощность при этом намного меньше, чем у ламп дневного света.
  • Служить собранный источник света будет в 5–10 раз дольше.
  • Наконец, последнее преимущество — направленность света. Он не рассеивается и направлен строго вниз, благодаря чему используется у рабочего стола или на кухне.

Светильник, установленный на кухонном гарнитуре

Разумеется, испускаемый свет не отличается высокой яркостью, но главным достоинством является низкое энергопотребление лампы. Даже если включить и никогда не выключать её, то она за год съест всего 4 кВт энергии. При этом стоимость потребляемой электроэнергии в год сопоставима со стоимостью билета в городском автобусе. Поэтому такие источники света особенно эффективно использовать там, где требуется постоянная подсветка (коридор, улица, подсобка).

Собираем простую лампочку из светодиодов

Разберем другой способ создания светодиодного светильника. Люстра или настольная лампа нуждается в стандартном цоколе E14 или E27. Соответственно, схема и используемые диоды будут отличаться. Сейчас широко используются компактные люминесцентные лампы. Нам потребуется один перегоревший патрон, также изменим общий список материалов для сборки.

  • перегоревший цоколь E27;
  • драйвер RLD2-1;
  • светодиоды НК6;
  • кусок картона, но лучше — пластика;
  • суперклей;
  • электрическая проводка;
  • а также ножницы, паяльник, плоскогубцы и другие инструменты.

Приступим к созданию самодельной лампы:

  1. Сначала нужно разобрать старый светильник. В люминесцентных компактных лампах цоколь присоединяется к пластинке с трубками при помощи защелок. Если найти места с защелками и поддеть их отверткой, то цоколь отсоединится достаточно просто. При разборке нужно быть осторожным, чтобы не повредить трубки. Если они лопнут, то наружу попадут ядовитые вещества, содержащиеся в них. При вскрытии следите, чтобы электропроводка, ведущая к цоколю, осталась цела. Также не выбрасывайте содержимое цоколя.
  2. Из верхней части с газоразрядными трубками нужно сделать пластинку, к которой будут крепиться светодиоды. Для этого отсоединяем трубки лампочки. В оставшейся пластинке находится 6 отверстий. Чтобы светодиоды надежно крепились в ней, нужно сделать пластмассовое или картонное «дно», которое также будет изолировать светодиоды. Использовать будем светодиоды НК6 (фото внизу). Их достоинство в том, что они многокристальные (по 6 кристаллов в диоде) с параллельным подключением. Из-за этого источник света получается достаточно ярким при минимальной мощности.
  3. В крышке делаем по 2 отверстия для каждого светодиода. Прокалывайте отверстия аккуратно и равномерно, чтобы их расположение и задуманная схема соответствовали друг другу. При использовании в качестве «дна» куска пластмассы светодиоды будут крепиться довольно прочно, но в случае применения куска картона понадобится склеить основание со светодиодами с помощью суперклея или жидких гвоздей.
  4. Так как лампочка будет применяться в сети с напряжением 220 вольт, то понадобится драйвер RLD2-1. К нему можно подсоединить 3 одноваттных диода. У нас же 6 светодиодов с мощностью 0,5 ватт каждый. Поэтому схема соединения будет состоять из двух последовательно соединенных частей, в каждой части располагается 3 параллельно подсоединенных светодиода. Вверху приведена схема, а в реальности вся конструкция выглядит так:
  5. Перед сборкой нужно изолировать драйвер и плату друг от друга при помощи кусочка картона или пластика. Это позволит избежать короткого замыкания в будущем. Беспокоиться о перегреве не стоит, лампа практически не нагревается.
  6. Осталось собрать конструкцию и проверить в деле.

Световой поток собранного светильника равняется 100–120 люменам. Благодаря чистому белому свету лампочка кажется существенно светлее. Этого хватит для освещения небольшого помещения (коридора, подсобки). Главным достоинством светодиодного источника света является низкое энергопотребление и мощность — всего 3 Ватта. Что в 10 раз меньше ламп накаливания и в 2–3 раза — люминесцентных. Работает она от обычного патрона с питанием 220 вольт.

Заключение

Значит, имея под руками неработающие линейные или компактные люминесцентные лампы и несколько элементов, приведенных выше в данной статье, можно создать своими руками светодиодную лампу, обладающую рядом преимуществ. Одно из основных — низкая стоимость по сравнению с лампами, которые можно приобрести в магазине. При сборке и монтаже требуется соблюдать меры безопасности, так как приходится работать с высоким напряжением, поэтому следует придерживаться последовательности монтажа по схеме. В итоге получите лампу, которая будет долго работать и радовать глаз.

Хотите вечных светодиодов? Расчехляйте паяльники и напильники. Или домашнее освещение самодельщика

Когда-то давным давно, когда я еще учился в школе, а на дворе был конец перестройки, мой дядя (заронивший в меня интерес к электронике) припер домой сумку вынесенного через проходную завода добра. Собственно, такие сумки он приносил домой вполне регулярно, пополняя запасы, хранившиеся в диване. Диван этот, как вы догадываетесь, манил, и иногда в отсутствии дяди я в него заглядывал с восторгом. Но кое-что из этой сумки в диван не попало, а попало в мои руки. Дядя мне вручил пачку — штук десять — макетных плат, и новенькую нераспечатанную коробку дефицитных, да и не дешевых в то время светодиодов. Причем светодиоды были не простые: вместо привычной маркировки АЛ-что-то там на коробке стоял код из четырех цифр, как я понял — они были экспериментальные. И они были яркие. По сравнению с привычными АЛ307 или АЛ310 — просто ослепительные. И их к тому же было много — штук 50.

Идея «куда это богатство применить» возникла моментально: светодиоды были распаяны на одной из макетниц — сколько влезло (влезли не все), и из них вышел великолепный красный фонарь для печати фотографий, который абсолютно не засвечивал фотобумагу даже в упор. Правда, тут же я узнал о том, что «светодиоды не греются» — это вранье, так что ток пришлось снизить вдвое, с 10 мА на светодиод до 5. А еще через полгода успешной эксплуатации узнал и о том, что «светодиоды не перегорают» — это тоже неправда: первый светодиод в сборке погас, оказался пробит. А со временем и весь фонарь пришел в негодность.

И вот сейчас я снова слышу из каждого утюга про «вечные» светодиодные лампочки, а дома за неполный год перехода на светодиодные лампы перегорела уже третья по счету.

Почему светодиодные лампочки не вечны?

Да потому что ничего нет вечного. Светодиод, к тому же — штука тонкая. Буквально. В его структуре имеются слои толщиной в считанные нанометры, образующие квантовые ямы. Диффузия и электромиграция к таким слоям безжалостны — они размывают их, создают дефекты, постепенно снижая световыход и увеличивая вероятность катастрофы в масштабах крохотного кристалла, в котором, к слову, выделяется световая и тепловая энергия, удельное значение которой в расчете на кубический сантиметр p-n перехода можно сравнить разве что с ядерным взрывом (немного утрировано, но сами прикиньте плотность энерговыделения). Чем светодиод горячее, тем все эти негативные процессы будут идти быстрее. А он, как мы уже в курсе, греется. Греется даже тогда, когда через него идет ток в 10 миллиампер. А тем более — когда это мощный прибор, ток через который как минимум 100 мА, а бывает — и ампер, и даже три ампера. И в тепло, не смотря на всю энергетическую эффективность светодиодов, переходит значительная доля от подведенной к светодиоду электроэнергии. От двух третей до трех четвертей.

А куда охлаждаться светодиодам в светодиодной лампочке? А некуда, по большому счету. Светодиод сам по себе спроектирован, чтобы его можно было охлаждать. Кристалл припаян к массивному основанию из меди или высокотеплопроводной керамики, у этого основания есть специальная площадка для пайки к внешнему теплоотводу, в роли которой — плата с алюминиевой или медной подложкой. А подложка эта, по идее, должна быть через термопасту прикручена к хорошему радиатору с большой площадью. А прикручена она в лучшем случае к металлическому корпусу светодиодной лампы, площадь которого совершенно недостаточна для рассеивания более чем нескольких ватт тепла, да еще и в закрытом плафоне. В худшем — корпус вообще пластмассовый, и в этот корпус еще попадает тепло от драйвера и от не вышедшего наружу и потерявшегося в недрах лампочки света. Вот и жарятся светодиоды при температуре, превышающей 100, а то и 130°С. И, кстати, не только светодиоды, но и драйвер, который тоже нередко выходит из строя.

Читайте также:  Промышленный обратный осмос: область применения, принцип работы, виды и цена

Что делать-то?

Одно из трех. Либо мы, оставив на месте старую люстру, ставим в нее лампочки меньшей мощности. Они меньше будут греться и у них больше шансов прожить долго. Разумеется, в комнате станет темно: мы вернемся во времена, когда в люстре из экономии и пожаробезопасности стояли лампочки по 25 ватт, от которых ушли, поставив на их место пятнадцативаттные энергосберегайки, сделавшие из темной берлоги светлое помещение, в котором приятно находиться.

Либо мы покупаем новую люстру, в которую можно вкрутить больше лампочек. Так мы останемся со светлой комнатой и получим (возможно) более долгую жизнь лампочек. Только на люстру, как и на лампочки, придется потратиться.

И, наконец, третий вариант: мы забываем само понятие «светодиодная лампа», как страшный сон и ставим на место люстры специально спроектированный светодиодный светильник. Продуманный и в плане хорошего использования светового потока (у светодиодных ламп типа «висит груша — нельзя скушать» с этим в приборах, рассчитанных на лампы накаливания, не всегда хорошо — они плоховато светят вбок и назад), и в плане качественного охлаждения.

Рынок

На рынке есть такие светильники. Но по большей части они во-первых, дорогие, а во вторых — страшные. Этакие промышленные штуковины, которые уместны в гараже, цеху, в торговом зале гипермаркета, в офисе, наконец — но не в квартире. Нет, есть и красивые, и дизайнерские очень эффектно выглядящие светильники. Но — во-первых, опять же, цена, а во-вторых, в жертву дизайну принесено охлаждение.

Так, классическая китайская светодиодная люстра-блин — это пятьдесят ватт светодиодов, сидящих на алюминиевой плате в виде кольца диаметром 45 см и шириной сантиметров 8. И — все. Никакого тебе корпуса с оребрением, ничего. И опять-таки, плата в почти наглухо закрытом корпусе. Ну хоть драйвер чуть наружу вынесен. Вердикт: жить будет, как светодиодная лампочка. Только когда сдохнет, менять придется не лампочку за 150 рублей, а люстру за пять-десять тысяч.

В общем, выход, кажется, один: умелые руки.

Самодельный светильник: проектирование

Сразу скажу: светильник будет не на светодиодной ленте и без блютуса.

Для начала, оценим, сколько нам нужно света. Тут дело вкуса, но я люблю, когда в жилище светло. Всякий интимный полумрак я люблю в особых случаях, в романтичной обстановке, но в обычной жизни он навевает тоску. Считать можно по-всякому, но я воспользуюсь тем фактом, что с люстрой с пятью энергосберегайками по 15 ватт, дававшими каждая по 950 лм, в комнате было хорошо. То есть 5 килолюмен нам будет достаточно. Теперь идем на сайт Cree, находим там Datasheet на модули CXA2530. Почему именно на них? Да потому что у меня есть несколько штук таких модулей, и с ними удобно работать: к ним просто припаиваются провода, а сами модули сажаются прямо на радиатор с помощью прилагающегося фланца. А еще их несложно купить — известный китайский интернет-магазин в помощь. У имеющихся у меня модулей бин светового потока Т4, это соответствует номинальному световому потоку 3440-3680 лм. Сразу 20% от этой цифры отнимаем — они потеряются на рассеивателе. Получаем световой поток 2750-2950 лм, а учитывая, что получается этот поток при мощности около 30 Вт, получаем потребную для освещения мощность (подведенную к светодиодам) около 50 Вт. Поскольку комната у нас длинная, мы уберем люстру из центра и сделаем два одинаковых светильника по 25 ватт.

Приняв КПД светодиодов за 25% (достаточно консервативная оценка — скорее всего, лучше, но уж точно не хуже), выясняем, что в каждом светильнике выделяется 18,75 Вт тепла. И наша задача — выбрать под это тепловыделение радиатор. Вот как мы это сделаем.

Будем исходить из максимальной температуры кристалла = 85°C и температуры окружающей среды = 35°C. То есть = 50°C. Перепад температуры пропорционален рассеиваемой мощности, а коэффициент пропорциональности называется тепловым сопротивлением: , и измеряется оно в кельвинах (или градусах цельсия) на ватт. В нашем случае тепловое сопротивление кристалл-окружающая среда должно быть равно 2 °С/Вт.
Из чего же состоит тепловое сопротивление? Первый его компонент — это тепловое сопротивление, присущее самому корпусу светодиода. Фирма Cree не дает эту величину в даташите напрямую, предлагая воспользоваться странным графиком, но в ранних публикациях в журналах о выпуске новых светодиодных матриц указывалось значение 0,8 °С/Вт.

Второй компонент общей величины теплового сопротивления — это сопротивление, создаваемое слоем термопасты между корпусом и радиатором. В качестве термопасты мы возьмем старый-добрый Алсил-3, с теплопроводностью = 1,7-2 Вт/м*К. При слое пасты толщиной 50 мкм и площади теплорассеивающей поверхности 2,8 (площадь круга диаметром 19 мм под излучающей поверхностью матрицы) получаем = 0,105 °С/Вт.

Итак, на радиатор у нас остается 1,1 °С/Вт. Исходя из этой цифры, выбираем радиатор, накинув процентов 30 «на вранье», на растекание тепла от маленькой матрицы и на то, что радиатор будет неоптимально ориентирован в пространстве. Например, нам подойдет профиль АВМ-076 размером сечения 176х40 мм с тепловым сопротивлением куска длиной 100 мм 0,5 °С/Вт. Нам хватит куска этого профиля длиной 80-100 мм. 100 мм — это стандартные куски, имеющиеся в продаже, 80 нужно заказывать у производителя (Виртуальная механика, virtumech.ru), такой вариант выглядит несколько более эстетичным за счет меньшей ширины.

Осталось выбрать драйвер. Критерии для его выбора — это ток и рабочие пределы выходного напряжения. Мощность 25 Вт получается при токе около 0,7 А, напряжение на матрице при этом составит около 35-36 В.

Конструкция

Перебрав несколько вариантов конструкции светильника, я остановился на рассеивателе из матового полупрозрачного пластика, имеющем вид полуцилиндра. Форма эта получается простейшим способом — за счет крепления изогнутой пластины к боковым сторонам радиатора. Способ крепления достаточно произволен — на винтах с прижимными пластинами, на клею — я воспользовался красным двусторонним скотчем «Момент». В качестве рассеивателя я применил рассеивающую пленку из подсветки разбитого ЖК монитора — она имеет очень хорошее светопропускание. Можно также заматировать абразивом пленку для печати на лазерном принтере или любую другую плотную пластиковую пленку.

Матрица с предварительно припаянными проводами устанавливается с помощью комплектного фланца в центре радиатора с помощью двух винтов М3 (гайки использовать неудобно, так что придется поработать метчиком). Перед приклеиванием рассеивателя свободную от матрицы плоскую поверхность радиатора рекомендуется оклеить алюминиевым скотчем или окрасить белой краской — это снизит потери света.

По поводу термопасты — хотелось бы заметить, что использование темной термопасты не рекомендуется: она процентов на 10 снизит световой поток. Я это хорошо заметил на двух экземплярах, один из которых я сделал с Алсилом-3, а на второй алсила не хватило и я воспользовался пастой из комплекта кулера фирмы Scythe, имевшей темно-серый цвет. Разница при измерении люксметром очевидна. Также нет смысла использовать более дорогие, чем алсил, термопасты с большей теплопроводностью: и на алсиле падает в худшем случае пара-тройка градусов, погоды они не сделают.

После сборки первого светильника (в котором я использовал радиатор от процессора Pentium II и который поселился в кухне, у него чуть меньшая мощность в районе 15 Вт), я принял решение ставить в светильники для комнаты не одну матрицу, а две — это «размазало» пятно света на рассеивателе и сделало свет более комфортным. Более разумно было бы в таком случае ставить менее мощные модули, скажем, CXA1820. Модули соединил параллельно, нежелательных последствий в виде неравномерного распределения тока между ними это не вызвало — обе матрицы светятся на глаз одинаково. Но длину подводящих проводов я на всякий случай выровнял.

Крепление к потолку у меня — с помощью коромысла из жесткой стальной проволоки диаметром 2 мм, концы которого продеты в отверстия в крайних ребрах радиатора и загнуты. За центр коромысла зацеплен крючок, прикрепленный к потолку — такой длины, чтобы между натяжным потолком и радиатором оказалось расстояние в пару сантиметров. Драйвер спрятан за натяжным потолком. Если бы светильники делались до потолка, можно было бы в него запрятать и радиаторы.

Поверхность радиатора можно покрасить в черный цвет перманентным маркером или тонким слоем из баллончика (толстым не надо — теплоизоляция). А можно и не красить, глаза он особо не мозолит.

Результаты

Светло. Под лампами на высоте столешницы — 450 лк, в середине комнаты 380 лк. Свет комфортный, цветопередача — вполне (правда, на кухне оказалось, что сырое мясо под этим светом выглядит, как-будто его слегка подкрасили черничным соком). Радиаторы после многочасовой работы теплые, но не горячие. Мерцание равно нулю (заслуга качественных драйверов).

И по ценам: матрицы обошлись в 550 рублей каждая (курс с тех пор, конечно, поменялся), радиаторы — по 600 рублей, драйвера — по 250 рублей, пленка досталась бесплатно. Итого — 2200+1200+500 = 3900 рублей. Плюс два-три часа работы.

LED светильники своими руками

Постепенно приборы освещения переходят на светодиодные лампы. Произошло это не сразу, был затяжной переходный период с применением так называемых экономок – компактных газоразрядных лампочек со встроенным блоком питания (драйвером) и стандартным патроном Е27 или Е14.

Такие лампы широко применяются и сегодня, поскольку их стоимость в сравнение с LED источниками света не такая «кусачая».

При неплохом балансе цены и экономичности (разница в цене с обычными лампами накаливания со временем окупается за счет экономии электроэнергии), газоразрядные источники света имеют ряд недостатков:

  • Срок службы ниже, чем у ламп накаливания.
  • Высокочастотные помехи от блока питания.
  • Лампы, не любят частого включения – выключения.
  • Постепенное снижение яркости.
  • Влияние на расположенные рядом поверхности: на поверхности потолка (над лампой) со временем появляется темное пятно.
  • Да и вообще, иметь в доме колбу с некоторым количеством ртути как-то не очень хочется.

Прекрасная альтернатива – светодиодные светильники. Список достоинств весомый:

  • Направленность светового потока предъявляет высокие требования при конструировании рассеивателя.
  • Все-таки они дорого стоят (речь идет о качественных брендах, безымянные изделия среднего уровня вполне доступны).

Если ценовой вопрос регулируется подбором производителя, то конструктивные особенности не всегда позволяют просто заменить лампу в любимой люстре. Разумеется, есть богатый выбор классических грушевидных LED ламп, которые подходят под любой размер.

Но именно в этой конструкции кроется «засада».

Перед нами качественная (при этом относительно недорогая) лампа с яркостью свечения 1000 Lm (эквивалент 100 ваттной лампы накаливания), и потребляемой мощностью 13 Вт. У меня такие LED источники света работают по много лет, светят приятным теплым светом (температура 2700 K), и никакой деградации яркости со временем не наблюдается.

Но для мощного света, требуется серьезное охлаждение. Поэтому корпус у этой лампы на 2/3 состоит из радиатора. Он пластиковый, не портит внешний вид, и достаточно эффективен. Из конструкции следует главный недостаток – реальным источником света является полусфера в верхней части лампы. Это затрудняет подбор светильника – не в каждой рожковой люстре такая лампа будет выглядеть гармонично.

Есть лишь один выход – покупать готовые LED светильники, конфигурация которых изначально рассчитана под конкретные источники света.

Ключевое слово – покупать. А куда девать любимые торшеры, люстры и прочие светильники в квартире?

Поэтому было принято решение конструировать LED лампы самостоятельно

Основной критерий – минимизация стоимости.

Есть два основных направления при разработке светодиодных источников света:

1. Применение маломощных (до 0.5 Вт) светодиодов. Их требуется много, можно сконфигурировать любую форму. Не нужен мощный радиатор (мало греются). Существенный недостаток – более кропотливая сборка.

2. Использование мощных (1 Вт – 5 Вт) LED элементов. Эффективность высокая, трудозатраты в разы меньше. Но точечное излучение требует подбора рассеивателя, и для реализации проекта нужны хорошие радиаторы.

Для экспериментальных конструкций я выбрал первый вариант. Самое недорогое «сырье»: 5 мм светодиоды с рассеиванием 120° в прозрачном корпусе. Их называют «соломенная шляпа».

  • прямой ток = 20 мА (0.02 А)
  • падение напряжения на 1 диоде = 3,2-3,4 вольта
  • цвет – теплый белый

Такое добро продается по 3 рубля пучок на любом радиорынке.

Я купил несколько упаковок по 100 шт. на aliexpress (ссылка на покупку). Обошлось чуть меньше, чем по 1 р. за штуку.

В качестве блоков питания (точнее сказать источников тока), я решил использовать проверенную схему с гасящим (балластным) конденсатором. Достоинства такого драйвера – экстремальная дешевизна, и минимальное потребление энергии. Поскольку нет ШИМ контроллера, или линейного стабилизатора тока – лишняя энергия в атмосферу не уходит: в этой схеме нет элементов с рассеивающим тепло радиатором.

Недостаток – отсутствие стабилизации тока. То есть, при нестабильном напряжении электросети, яркость свечения будет меняться. У меня в розетке ровно 220 (+/- 2 вольта), поэтому такая схема в самый раз.

Элементная база тоже не из дорогих.

  • диодные мосты серии КЦ405А (можно любые диоды, хоть Шоттки)
  • пленочные конденсаторы с напряжением 630 вольт (с запасом)
  • 1-2 ваттные резисторы
  • электролитические конденсаторы 47 mF на 400 вольт (можно взять емкость побольше, но это выходит за рамки экономности)
  • такие мелочи, как макетная плата и предохранители, обычно есть в арсенале любого радиолюбителя

Чтобы не изобретать корпус с патроном Е27, используем сгоревшие (еще один повод от них отказаться) экономки.

После аккуратного (на улице!) извлечения колбы со ртутными парами, остается прекрасная заготовка для творчества.

Основа основ – расчет и принцип работы токового драйвера с гасящим конденсатором

Типовая схема изображена на иллюстрации:

Как работает схема:

Резистор R1 ограничивает скачок тока при подаче питания, пока схема не стабилизируется (около 1 секунды). Значение от 50 до 150 Ом. Мощность 2 Вт.

Резистор R2 обеспечивает работу балластного конденсатора. Во-первых, он его разряжает при отключении питания. Как минимум для того, чтобы вас не тряхнуло током при выкручивании лампочки. Вторая задача – не допустить токового броска в случае, когда полярность заряженного конденсатора и первой полуволны 220 вольт не совпадают.

Собственно, гасящий конденсатор С1 – основа схемы. Он является своеобразным фильтром тока. Подбирая емкость, можно установить любой ток в цепи. Для наших диодов он не должен превышать 20 мА в пиковых значениях напряжения сети.

Далее работает диодный мост (все-таки светодиоды – это элементы с полярностью).

Электролитический конденсатор C2 нужен для предотвращения мерцания лампы. Светодиоды не имеют инертности при включении-выключении. Поэтому глаз будет видеть мерцание с частотой 50 Гц. Кстати, этим грешат дешевые китайские лампы. Проверяется качество конденсатора с помощью любого цифрового фотоаппарата, хоть смартфона. Посмотрев на горящие диоды через цифровую матрицу, можно увидеть моргание, неразличимое для человеческого глаза.

Кроме того, этот электролит дает неожиданный бонус: светильники выключаются не сразу, а с благородным медленным затуханием, пока емкость не разрядится.

Расчет гасящего конденсатора производится по формуле: I = 200*C*(1.41*U cети – U led) I – полученный ток цепи в амперах

200 – это константа (частота сети 50Гц * 4)

С – емкость конденсатора С1 (гасящего) в фарадах

U сети – предполагаемое напряжение сети (в идеале – 220 вольт) U led – суммарное падение напряжения на светодиодах (в нашем случае – 3,3 вольта, помноженное на количество LED элементов)

Подбирая количество светодиодов (с известным падением напряжения) и емкость гасящего конденсатора, надо добиться требуемого тока. Он должен быть не выше указанного в характеристиках светодиодов. Именно силой тока вы регулируете яркость свечения, и обратно пропорционально – срок жизни светодиодов.

Для удобства можно создать формулу в Exel.

LED светильники своими руками

Схема проверена неоднократно, первый экземпляр собран почти 3 года назад, трудится в светильнике на кухне, сбоев в работе не было.

Переходим к практической реализации проектов. Количество LED элементов и емкость конденсатора в отдельных схемах обсуждать нет смысла: проекты индивидуальные для каждого светильника. Рассчитывались строго по формуле. Приведенная выше схема на 60 светодиодов с конденсатором на 68 микрофарад – не просто пример, а реальный расчет для тока в цепи 15 мА (для продления жизни светикам).

LED лампа в рожковую люстру

Выпотрошенный патрон от экономки используем в качестве корпуса для схемы и несущей конструкции. В этом проекте я не использовал макетную плату, собрал драйвер на кругляше из ПВХ толщиной 1 мм. Получилось как раз в размер. Два конденсатора – по причине подбора емкости: не нашлось нужного количества микрофарад в одном элементе.

В качестве корпуса для размещения LED элементов использована баночка от йогурта. В конструкции также использовал обрезки листов вспененного ПВХ 3 мм.

После сборки получилось аккуратно и даже красиво. Такое расположение патрона связано с формой люстры: рожки направлены вверх, на потолок.

Далее размещаем светодиоды: по схеме 150 шт. Протыкаем пластик шилом, трудозатраты: один полноценный вечер.

Забегая вперед, скажу: материал корпуса себя не оправдал, слишком тонкий. Следующий светильник был изготовлен из листового ПВХ 1 мм. Для придания формы рассчитал развертку конуса на те же 150 диодов.

Получилось не так изящно, но надежно, и отлично держит форму. Лампа полностью скрыта в рожке люстры, поэтому внешность не столь важна.

Простая светодиодная лампа своими руками

Внимание! Данная конструкция не имеет гальванической развязки от высоковольтной сети переменного тока. Строго соблюдайте технику безопасности. При повторении конструкции Вы всё делаете на свой страх и риск. Автор не несёт никакой ответственности за Ваши действия.

В статье рассмотрена конструкция светодиодной лампы с питанием от сети переменного тока с напряжением до 240 В и частотой 50/60 Гц. Данная лампа мне служит уже более двух лет и я хочу поделится с Вами этой конструкцией. Лампа имеет очень простую схему ограничения тока, что даёт возможность повторения конструкции начинающим радиолюбителям. Она имеет небольшую мощность и может применяться в качестве ночника или для подсветки помещения, где не нужна большая яркость свечения, но важен такой фактор, как низкое энергопотребление и долгий срок службы. Её можно повесить в подъезде или на лестничной площадке и не переживать о выключении или высоком расходе электричества – срок её службы практически ограничен сроком службы применённых светодиодов, так как данная лампа не имеет импульсного преобразователя, которые часто выходят из строя быстрее самих светодиодов, а радиоэлементы здесь подобраны таким образом, что не превышаются номинальные напряжения и рабочие токи как конденсаторов с диодами, так и самих светодиодов даже при максимальном допустимом напряжении и частоты в питающей электросети.

Лампа имеет следующие характеристики:

Напряжение питания:до 240 В
Частота питающей сети:50/60 Гц
Потребляемая мощность:не более 1,8 Вт
Количество светодиодов:9 штук
Общее число кристаллов:27 единиц
Тип преобразования:с гасящим конденсатором

В лампе использованы трёхкристалльные светодиоды тёплого белого свечения типа smd5050:

Светодиоды smd5050

При протекании номинального тока 20 мА на одном кристалле светодиода падает напряжение порядка 3,3 В. Это основные параметры для расчёта гасящего конденсатора для питания лампы.

Светодиоды smd5050

Кристаллы всех девяти светодиодов соединены последовательно друг с другом и таким образом через каждый кристалл протекает одинаковый ток. Этим достигается одинаковое свечение и максимальный срок службы светодиодов и следовательно всей лампы. Схема соединения светодиодов показана на рисунке:

После спаивания получается вот такая светодиодная матрица:

Спаянная светодиодная матрица из светодиодов 5050

Вот так это выглядит с лицевой стороны:

Спаянная светодиодная матрица из светодиодов 5050

Представляю Вам принципиальную схему данной светодиодной лампы:

В лампе используется двухполупериодный выпрямитель на диодах D1-D4. Резистор R1 ограничивает бросок тока во время включения лампы. Конденсатор C2 является фильтрующим и сглаживает пульсации тока через светодиодную матрицу. Для данного случая его ёмкость в микрофарадах примерно можно рассчитать по формуле:

C=10I/U

где I это ток через светодиодную матрицу в миллиамперах и U – падение напряжения на ней в вольтах. Не стоит гнаться за слишком большой ёмкостью этого конденсатора, так как токогасящий конденсатор играет роль ограничителя тока, а подключённая светодиодная матрица является стабилизатором напряжения.

В данном случае можно использовать конденсатор ёмкостью 2,2-4,7 мкФ. Параллельно ему установленный резистор R3 обеспечивает полную разрядку этого конденсатора после выключения питания. Резистор R2 играет ту же роль для токогасящего конденсатора C1. Теперь главный вопрос – как рассчитать ёмкость гасящего конденсатора? В интернете есть много формул и онлайн калькуляторов для этого, но все они занижали результат и давали более низкую ёмкость, что подтвердилось на практике. При использовании формул с различных сайтов и после применения онлайн калькуляторов в большинстве случаев получилась ёмкость 0,22 мкФ. При установке же конденсатора с данной ёмкостью и при замере протекающего через светодиодную матрицу тока был получен результат 12 мА при напряжении сети 240 В и частоты 50 Гц:

Напряжение сети 240 В

Ток потребления 12 мА

Тогда я пошёл более длинным путём и сначала рассчитал необходимое гасящее сопротивление, а затем вывел ёмкость гасящего конденсатора. За исходные данные мы имеем:

  • Напряжение питающей сети: 220 В. Возьмём максимально возможное – 240 В.
  • Частоту сети я взял в 60 Гц. При частоте в 50 Гц через матрицу будет протекать меньший ток и лампа будет светить менее ярче, но, зато будет запас.
  • Напряжение, падающее на светодиодной матрице составит 27*3,3=89,1 В, так как у нас 27 последовательно включённых светодиодных кристаллов и на каждом из них будет падать примерно 3,3 В. Округлим это значение до 90.
  • При максимальной частоте 60 Гц и напряжении в сети 240 В, протекающий через матрицу ток, не должен превышать 20 мА.

В расчётах используются действующие значения токов и напряжений. По закону Ома гасящее сопротивление должно составлять:

R = (Uc-Um)/Im

(240-90)/0.02 = 7500 Ом

где Uc – напряжение в сети (В)

Um – напряжение на светодиодной матрице (В)

Im – ток через матрицу (A).

Так как в качестве гасящего сопротивления мы используем конденсатор, то Xc = R и по известной формуле для ёмкостного сопротивления:

Xc = 1/(2πfC)

вычисляем необходимую ёмкость конденсатора:

C = 1000000/(2πfXc)

1000000/(2*3.14159265*60*7500) ≈ 0,35 мкФ

где f – частота питающей сети (Гц)

Xc – необходимое ёмкостное сопротивление (Ом)

Напоминаю, что полученное в данном случае значение ёмкости конденсатора справедливо для частоты питающей сети 60 Гц. Для частоты же 50 Гц по расчётам получается значение 0,42 мкФ. Для проверки справедливости я временно поставил два параллельно соединённых конденсатора по 0,22 мкФ с получившейся суммарной ёмкостью в 0,44 мкФ и при замере протекающего через светодиодную матрицу тока было зафиксировано значение в 21 мА:

Ток потребления 21 мА

Но для меня была важна долговечность и универсальность и по расчёту на частоту 60 Гц с результатом необходимой ёмкости в 0,35 мкФ я взял близкий номинал с ёмкостью в 0,33 мкФ. Вам так же советую брать конденсатор немного меньшей ёмкости, чем расчётная, что бы не превышать допустимый ток используемых светодиодов.

Далее подставив формулу для расчёта сопротивления в формулу для определения ёмкости и сократив всё выражение я вывел универсальную формулу в которую, подставив исходные значения, можно вычислить необходимую ёмкость конденсатора для любого числа светодиодов в лампе и любого питающего напряжения:

C = 1000000/(6,283f((Uc-Um)/Im))

159159/(1000f((Uc-Um)/Im))

Окончательная формула принимает следующий вид:

C = 159Id/(f(Uc-nUd))

Где C – ёмкость гасящего конденсатора (мкФ)

Id – допустимый номинальный ток применяемого в лампе светодиода (мА)

f – частота питающей сети (Гц)

Uc – напряжение питающей сети (В)

n – количество используемых светодиодов

Ud – падение напряжения на одном светодиоде (В)

Может быть кому то будет лень производить эти расчёты, но по этой формуле можно определить ёмкость для любой светодиодной лампы с любым числом последовательно соединённых светодиодов любого цвета. Можно например сделать лампу из 16 красных светодиодов подставляя в формулу соответствующее красным светодиодам падение напряжения. Главное придерживаться разумных пределов, не превышать количество светодиодов с общим напряжением на матрице до напряжения питающей сети и не использовать слишком мощные светодиоды. Таким образом можно изготовить лампу с мощностью до 5-7 Вт. В противном случае может понадобиться конденсатор слишком большой ёмкости и могут возникнуть сильные пульсации тока.

Вернёмся к моей лампе и на фотографии ниже показаны радиоэлементы, которые я использовал:

Используемые радиоэлементы

У меня не нашлось конденсатора ёмкостью 0,33 мкФ и я поставил параллельно включённых два конденсатора с ёмкостью 0,22 и 0,1 мкФ. С такой ёмкостью протекающий через матрицу ток, будет немного меньше расчётного. Фильтрующий конденсатор в моём случае на напряжение 250 В, но я настоятельно рекомендую использовать конденсатор на напряжение от 400 В. Хотя падение напряжения на моей светодиодной матрице и не превышает 90 В, но в случае обрыва или перегорания хоты бы одного из светодиодов напряжение на фильтрующем конденсаторе достигнет амплитудного значения, а это более 330 В при действующем напряжении в питающей сети 240 В. (Ua = 1,4U)

В качестве корпуса я использовал часть компактной энергосберегающей люминесцентной лампы вытащив из неё электронную начинку:

Корпус светодиодной лампы

Плату я выполнил навесным монтажом и она с лёгкостью поместилась в указанный корпус:

Плата светодиодной лампы с навесным монтажом

Светодиодную матрицу я приклеил двойным скотчем к круглому куску гетинакса, который привинтил к корпусу двумя винтами с гайками:

Светодиодная матрица в корпусе

Так же я сделал небольшой рефлектор, вырезав его из жестяной банки:

Светодиодная лампа в сборе

Я провёл реальные измерения при напряжении в питающей сети 240 В и частоте 50 Гц:

Напряжение сети 240 В

Постоянный ток через светодиодную матрицу принял значение 16 мА, что не превышает номинального тока используемых светодиодов:

Постоянный ток через светодиодную матрицу

Так же я разработал печатную плату под радиоэлементы в программе Sprint-Layout. Все детали поместились на площади 30Х30 мм. Вид данной печатной платы Вы можете видеть на рисунках:

Вид печатной платы снизу Вид печатной платы сверху

Я предоставил эту печатную плату в форматах PDF, Gerber и Sprint-Layout. Вы свободно можете скачать указанные файлы. Хотя на схеме и указаны диоды КД105, но так как в настоящее время они являются редкостью, то печатная плата разведена под диоды 1N4007. Так же можно использовать другие выпрямительные диоды средней мощности на напряжение от 600 В и на ток в 1,5-2 раза больший тока потребления светодиодной матрицы. Дам рекомендацию на счёт сборки этой матрицы. Все светодиоды лицевой стороной я временно приклеил к малярному скотчу и спаял все выводы согласно схеме, после чего готовую матрицу со стороны выводов приклеил на двусторонний скотч и снял бумажный малярный скотч с лицевой стороны. Если у Вас будет возможность, я рекомендую расположить светодиоды на большем расстоянии друг от друга, так как они будут выделять тепло и от близкого расположения могут перегреваться и быстро деградировать.

Светодиодная лампа

Лично у меня эта лампа светит по семь часов в день уже третий год и пока не было никаких проблем. К статье прилагаю также таблицу Exsel с формулой для расчёта. В ней просто нужно подставить исходные значения и в результате получите необходимою ёмкость гасящего конденсатора. Всем ярких и долговечных лампочек. Оставляйте отзывы и делитесь статьёй, так как в интернете много неправильных формул и калькуляторов дающих неверный результат. Здесь же всё проверено опытом и подтверждено временем и реальными измерениями.

Светодиодная лампа своими руками, преимущества и недостатки, схема, инструкция

Казалось бы, зачем делать светодиодную лампу из подручных материалов своими руками, если огромное количество и в большом разнообразии лэд-светильников сегодня можно купить в магазинах – стоимость, энергоэффективность и долговечность у самодельных светоисточников при правильном подходе могут быть намного лучше, чем у покупных аналогов. Рассмотрим принцип работы, плюсы и минусы, виды схем и поэтапный процесс сборки такого прибора.

Принцип работы led-устройства

В основе работы любого led-элемента лежит небольшой полупроводниковый плоский кристалл. При прохождении через него электрического тока образуется однонаправленное перемещение электронов, в результате которого образует столкновение частиц на границе p-n-перехода. При поддержании стабильности этого процесса посредством подачи постоянного напряжения генерируется поток световых частиц – фотонов. Собранная своими руками на базе такого лэд-кристалла или заводская светодиодная лампа излучает свет.

Обратите внимание! Существуют 4 основных типа светодиодных матриц – DIP с двумя проводниками (используется в гирляндной продукции), «Пиранья» с четырьмя выводами (применяется в авто-светильниках), SMD (наиболее распространенный вариант в бытовых лампах) с верхним компактным расположением кристалла и СОВ с размещением светодиода непосредственно в плате.

Преимущество и недостатки самодельной лампы

Самый большой недостаток промышленных светодиодных ламп – чрезмерно высокая цена. Поэтому есть смысл в изготовлении ее своими руками. Так у самодельных версий есть следующий ряд преимуществ:

  1. При соблюдении правил сборки и качественных материалах срок службы прибора может превышать далеко за 100 тыс. часов непрерывного свечения.
  2. Энергоэффективность (соотношение затраченной мощности и произведенной светимости – Вт/Лм) существенно выше чем у аналогов.
  3. В расчете на суммарную стоимость всех применяемых компонентов самодельная лампа окупается гораздо быстрее своих покупных версий.

Главным минусом самостоятельно собранных лэд-лампочек является отсутствие на нее гарантии. Однако при использовании исключительно качественных комплектующих и правильной сборке он легко нивелируется.

Основная проблема тех, кто своими руками хочет собрать светодиодную лампу, это трансформация электрического тока для ее питания из переменного в пульсирующий и постоянный и перевод напряжения на 12 вольт. Кроме того, придется решать такие практические задачи – как в пространстве распределить диоды и компоненты, выполнить качественную изоляцию и обеспечить хороший отвод тепла.

Схемы светодиодных ламп

Существует два основных варианта схем для светодиодных ламп, которые можно изготовить своими руками:

  1. На диодном мосте.
  2. С резисторным сопротивлением.

Рассмотрим их подробно, а также как изготовить светодиодный элемент на их основе.

Вариант с диодным мостом

Данная схема включает четыре разнонаправленно подключаемых диодных элемента. Подобный мост преобразует обычный ток сети на 220 В синусоидального характера в необходимый для самодельной лэд-лампочки – пульсирующий. Принцип его работы достаточно прост: каждая полуволна пропускается через два диода-модуля, и потому они переменяются, теряя свою полярность. Подключение выглядит следующим образом:

  1. Перед самим мостом (со стороны подсоединения бытовой сети) на «+» подводится конденсатор, например, С10,47х250 В.
  2. Перед контактом «-» устанавливается блок сопротивления на 100 Ом.
  3. С тыла моста параллельно монтируется еще один с аналогичными параметрами конденсатор. Его назначение – сглаживание перепада напряжения сети.

Изготовление светодиодного элемента

Проще всего сделать самому лэд-светильник, взяв за основу плату от уже отработанного аналогичного прибора. Однако прежде чем начать сборку, нужно удостовериться в том, что все компоненты сохраняют работоспособность. Для этой цели можно применить блок питания от компьютера, телефонной подзарядки или любой АКБ. Главное, чтобы их выходное напряжение не превышало значения в 12 вольт.

Важно! Если нужно собрать на старой лед-матрице от ранее использованной лампы, то вышедшие из строя светодиодные элементы можно просто распаять своими руками, а на их место поставить новые. При этом основное внимание должно уделяться правильному расположению анодов и катодов, их плотному соединению. Ни в коем случае нельзя допускать случайного соединения соседних электродов – это может привести к замыканию и перегоранию схемы.

Как вариант, цепочка на светодиодах может собираться полностью с нуля. В этом случае алгоритм действий своими руками выглядит следующим образом:

  1. Десять светодиодных элементов последовательно спаиваются по принципу – анод одного к катоду соседнего.
  2. В итоге девять соединений и пара свободных проводников по краям цепочки.
  3. Далее концы припаиваются к проводникам.

Приборы с резисторным сопротивлением

Собрать своими руками схему также можно на двух резисторах 12 k. Для этого потребуется спаять последовательно состоящие из одинакового количества светодиодных кристаллов две цепочки. При этом если одна из них присоединяется к первому модулю катодом, то другая ко второму – анодом.

Ввиду того, что инициация лэд-элементов происходит в схеме последовательно, эффект пульсации сглаживает и свет от нее идет мягкий, полезный и не раздражающий зрение. Поэтому ее можно рекомендовать для замены стандартной настольной лампы.

Чтобы получить светильник большой яркости можно подобным образом своими руками соединить до 40 led-кристаллов. Большее количество светодиодных элементов требует особых навыков и опыта в сборке электросхем.

Собираем простую лампочку из светодиодов

Прежде чем решиться на сборку светодиодной лампы своими руками, нужно тщательно продумать, где и как будет крепиться и помещаться такая схема. Рассмотрим, какие основные материалы для этого понадобятся, какие варианты корпусов для них можно применить и как выглядит пошагово процесс сборки самодельного светильника.

Светодиоды

Материалы для изготовления

Для изготовления светодиодной лампы с заданными характеристиками своими руками потребуются следующие материалы:

  1. Светодиоды. Это могут быть как отдельные элементы, например, НК6 с силой тока 100 мА и падением напряжения в 3 В, так и готовые лед-полоски.
  2. Диоды-выпрямители или мосты, например, 1N4007.
  3. Предохранитель (можно извлечь из цоколя отработанной лампы).
  4. Конденсатор, емкостью и величиной напряжения равными лэд-кристаллам в собранной цепочке.
  5. Основа для крепления светодиодов. Это может быть пластиковая или картонная конструкция с хорошими электроизолирующими и пожаробезопасными свойствами.
  6. Клеящее средство для монтажа диодов к каркасу.

Важно! Нередко для работоспособности лампы, собранной своими руками из схемы светодиодных элементов, требуется драйвер. Это может быть устройство как самодельного, так и заводского изготовления, типа bp 2832а.

Корпуса для светодиодных приборов

Для максимальной просты и быстроты сборки светодиодной схемы можно использовать следующие варианты корпуса:

  1. Цоколь лампы накаливания.
  2. Корпус люминесцентного светильника.
  3. Галогеновая лампочка.
  4. Специально изготовленный каркас.

Использование первого метода предполагает извлечение колбы и спирали, а затем размещение внутри схемы, а снаружи на плате диодных элементов. Собранную конструкцию можно закрутить в любой патрон, однако эстетичность такого светильника будет не на высоте. Поэтому подходит больше для закрытых плафонов.

Второй способ более удобен и практичен. При этом сначала колбу нужно демонтировать, а плату из цоколя извлечь. Далее возможны следующие варианты сборки:

  1. Лед-кристаллы вставляются в заранее просверленные отверстия в крышке, размещаемой под колбой, а компоненты устанавливаются в цоколь.
  2. Плата со светодиодами помещается внутри цоколя, при этом лэд-элементы крепятся в крышке из-под пластиковой бутылки или подходящего размера кружка из пластика.

Оба варианта имеют эстетичный вид и вполне позволяют использовать такую светодиодную лампу в открытой люстре. Применение галогенок для этой цели весьма ограниченно – ввиду невозможности потом вкрутить их в стандартный патрон. Такой метод применим для изготовления своими руками индикаторов и специальных приборов.

Пошаговая инструкция

Рассмотрим, как изготовить своими руками простейшую светодиодную лампу на базе люминесцентного цоколя типа Е27. Для начала необходимо подготовить следующие материалы:

  1. Цоколь модификации Е27 от перегоревшей старой энергосберегающей лампы.
  2. RLD2-1-драйвер.
  3. НК6-диоды.
  4. Фрагмент плотного картона, лучше пластика.
  5. Моментальный клей.
  6. Провода.
  7. Ножницы, паяльная станция, плоская отвертка, плоскогубцы и прочие сопутствующие инструменты.

Сама инструкция по сборке своими руками элементарной светодиодной лампы выглядит так:

  • Разбирается старая люминесцентная лампа. Для этого на цоколе находятся углубления с защелками. Их нужно просто поддеть отверткой, и трубка с платой отсоединится.
  • Далее нужно демонтировать светоизлучающие трубки и извлечь круглую пластинку с шестью отверстиями.
  • К пластике закрепляется аналогичного диаметра картонное или пластиковое основание – для надежного крепления светодиодов.
  • В основании прокалываются по два отверстия под каждый из шести монтируемых диодов. Если используется картон, то последние нужно приклеить, а если пластик – просто прижать лед-элементы за счет электродов.
  • К каждой паре из 3 светодиодов по 0,5 Вт подсоединяется параллельно по одному драйверу RLD2-1 в соответствии со следующей схемой.
  • Припаять входные контакты драйверов к клеммам цоколя и установить их внутрь.
  • При этом между ними и платой обязательно положить еще одну картонную или пластиковую прокладку для электроизоляции.
  • Вставить основание с диодами в цоколь.
  • Подключить к сети и проверить работоспособность светодиодной лампы.

Собранный своими руками по такой схеме лед-светильник будет потреблять всего 3 ватта и выдавать светимость порядка 120 Лм. Ее можно закрутить в любой подходящий по параметрам электропатрон.

Рекомендация! При вскрытии люминесцентной лампы нужно быть крайне осторожным, чтобы не повредить трубки, так как в них содержатся ядовитые вещества! Выкидывать в места утилизации бытового мусора содержимое прибора также не рекомендуется.

Основные выводы

Наличие в широком доступе радиотоваров и бытовой осветительной техники позволяет любому желающему своими руками изготовить светодиодную лампу. По сравнению с магазинскими аналогами она будет иметь следующие плюсы:

  1. Долговечность свыше 100 тыс. часов.
  2. Высокая энергоэффективность.
  3. Низкая себестоимость.

Таким образом можно сделать светодиодную лампу вечной – по факту при правильной эксплуатации она проработает и 50 и более лет. При этом существует два варианта сборки ее схемы – на диодном мосте и с резисторным сопротивлением. Второй метод позволяет сделать более мощные и сложные по конструкции светильники.

Для изготовления своими руками лампы на базе светодиодных элементов потребуется старый цоколь от люминесцентного прибора освещения, диоды, конденсаторы, предохранитель, провода, материал для крепления, а также паяльник, ножницы, отвертка, плоскогубцы и другие простейшие бытовые инструменты.

Если вы знаете другие способы изготовления своими руками светодиодной лампы, обязательно поделитесь информацией с нашими читателями в комментариях.

Как сделать самодельный светильник на светодиодах

Недостаточное количество света негативно влияет на органы зрения человека. Самодельный светильник на светодиодах станет отличным помощником в освещении вашего дома и устранит недостаток освещенности в нужном месте. В качестве элемента можно использовать светодиодные матрицы, ленты и взятые отдельно светодиоды.

Уникальность этого изобретения состоит в том, что его вы сможете сделать из любого вышедшего из строя осветительного прибора и оформить под любой интерьер. Можно сделать светильник на батарейках, такое решение позволит установить прибор в удобном месте. Уникальный абажур организует нужное направление для света, порадует вас и ваших гостей.

Как сделать самодельный светильник на светодиодах

Схемы подключения светодиодных светильников

Светодиодный светильник своими руками подключается к сети электропитания двумя способами. Первый способ подразумевает использование драйвера в качестве источника питания, а второй – блок питания.

Если требуются автономность и мобильность, вам нужен светильник на батарейках. В таком случае в корпусе устройства должен быть отсек для элементов питания. Лучше применить рамку от старого нерабочего электроприбора, используя посадочные места под батарейки.

Как сделать самодельный светильник на светодиодах

Самодельный светильник на светодиодах. В качестве элемента света – светодиодная лента. Источник питания – блок питания постоянного напряжения.

Драйвер

Светодиод является нелинейной нагрузкой, его электрические параметры меняются в зависимости от условий работы. При использовании драйвера не требуется применение токоограничивающего резистора, все драйвера имеют заводское значение по силе тока, по этому показателю подбирается количество светодиодов в цепи.

В зависимости от диапазона напряжения, в котором работает драйвер, подбирается количество светодиодов, которые соединены последовательно, таким образом, подключение осуществляется параллельно последовательным методом.

Как сделать самодельный светильник на светодиодах

Особенность драйвера — он всегда выдаёт одинаковый ток с выходного фильтра вне зависимости от величины и колебаний входного напряжения. Изготавливают их на базе транзисторов либо микросхемы.

Блок питания

Блок питания имеет только расчетное напряжение на выходе, розжиг светодиода осуществляется благодаря включению в цепь резистора, который предохраняет светодиод от перегорания. Когда перегорает резистор, светодиоды, установленные в модуле, могут полностью выйти из строя.

Если вы не хотите рассчитывать цепь с драйвером, то лучше используйте блок питания и светодиодную ленту. В таком случае необходимо обратить внимание на мощность ленты и блока питания, создав запас 20% в пользу блока питания.

Как сделать самодельный светильник на светодиодах

Драйверы используются только для подключения светодиодов и являются основой всех светодиодных ламп. Важно отметить, что драйвер рассчитан на работу в определенной цепи, в качестве источника питания с другими светодиодами он не подойдёт. К блоку питания можно подключить любые светодиоды, главное чтобы в цепи был установлен токовый резистор, а потребляемая мощность светодиодов не превышала пиковое значение мощности блока питания.

Использование резисторного сопротивления

У светодиодов существует одна негативная особенность – пульсация (регулярное мерцание). Чтобы побороть этот фактор и сделать свет более мягким, необходимо использовать дополнение в схеме электропитания.

Для этого используются сопротивление и конденсатор. Светильники, оснащенные дополнительным сопротивлением, имеют более мягкий свет, это благоприятно сказывается на органах зрения человека.

Реализовать данную схему сможет даже начинающий мастер. В цепь с последовательно соединёнными светодиодами устанавливается дополнительное сопротивление на 8-12 кОм.

Как сделать самодельный светильник на светодиодах

Электрическая часть

Итак, мы разобрались с источниками питания, теперь давайте посмотрим, что мы сможем запитывать. В качестве источника света вы можете использовать светодиодную ленту, любые отдельно взятые светодиоды нужной мощности и светодиодные матрицы.

Светодиодная матрица – совокупность светодиодов на одной подложке, количество которых может быть абсолютно разным. В отличие от ленты и отдельно взятых светодиодов, матрица отличное решение, которое удовлетворит любого человека. Активно применяются в прожекторах, имеют разный размер.

Как сделать самодельный светильник на светодиодах

Компактное размещение существенно уменьшает размер платы. Многие матрицы основаны на изолированной от светодиодов пластине, которая является теплоотводом. Если мощность светодиодной матрицы очень высокая, то требуется установка дополнительного радиатора. Устанавливается он на термопасту.

Некоторые светодиодные матрицы имеют встроенный драйвер и подключаются путем припаивания проводов сети переменного напряжения 220 В прямо к выводным контактам, находящимся на пластине. Такие устройства не рекомендуется использовать в жилых помещениях из-за высокого коэффициента пульсации. Используйте драйверные матрицы.

Применив драйверную светодиодную матрицу, вы получите максимально аккуратный и компактный монтаж светодиодов на плате и, соответственно, вид светильника будет эстетичен. Количество излучаемого света вас очень порадует, а его яркость вы сможете смягчить дополнительным сопротивлением.

Как сделать самодельный светильник на светодиодах

Драйверная светодиодная матрица – компактное решение. Сделайте светодиодный светильник своими руками используя такое решение, и получите минимальный размер и направленный свет.

В зависимости от стиля и дизайна не забывайте о светодиодной ленте, возможно применение ленты в паре с матрицей, таким образом, вы сможете создать особенное освещение, ведь лента имеет массу цветовых оттенков.

Идеи для создания светильников

Преимуществом идеи является то, что светильник можно установить стационарно, а также подвесить на потолок. Творчество подрастающего поколения весьма кстати – их шедевры станут хорошими абажурами, а в качестве источника света лучше всего применить мощные светодиоды или небольшую светодиодную матрицу.

Процесс изготовления абсолютно прост, основой для крепления элемента света и абажура станет пластиковая крышка. Источник света крепите при помощи клеевого пистолета, абажур можно зафиксировать клеем.

Как сделать самодельный светильник на светодиодах

Для реализации следующей идеи вам понадобятся деревянный брус, три болта с гайками длиной 40 мм, ножовка по металлу, патрон под лампу и электрический кабель с вилкой. Размер конструкции выбирается исходя из ваших требований.

Абажур можно изготовить самостоятельно или перетянуть уже имеющийся. В качестве каркаса лучше использовать стальную проволоку. Материал для обтяжки используйте любой, вся светодиодная техника излучает достаточно малое количество тепла, поэтому риск возгорания минимален.

Неподвижные элементы конструкции смазываются клеем ПВА и устанавливаются в зажим в неподвижном состоянии до полного высыхания, в теплом месте достаточно будет одних суток.

Как сделать самодельный светильник на светодиодах

Шарнирная часть выполняется строго по разметке, в противном случае вы испортите заготовку. Тщательно произведите замеры.

Светильник на батарейках получиться сделать из старой коробки. Для этого вам понадобиться прорезать отверстия, через которые свет будет попадать в помещения. Удобнее всего вырез получиться выполнить скальпелем.

Очень красиво смотреться вариант со звездами разного размера. Цвет освещения выбирайте индивидуально.

Как сделать самодельный светильник на светодиодах

Аэрозоль или любой отработанный жестяной баллон можно использовать в качестве основания для укладки светодиодной ленты. Такое решение применяется, чтобы компактно уложить большой метраж на малом участке. Сильный световой поток позволит установить абажур, который направит свет в нужное место. Оформляйте на свое усмотрение.

Как сделать самодельный светильник на светодиодах

Чтобы воплотить такую идею в жизнь потребуются основание, трубка и светодиодная лента. Все элементы конструкции собираются абсолютно просто. Такой светильник применяется в качестве ночника. Элементом питания пойдет блок постоянного напряжения 12 В.

Видео: Светодиодный недорогой ночник из подручных материалов.

Ссылка на основную публикацию