Свойства полиэтилена, применяемого для изготовления труб и фитингов

Мифы о трубах из сшитого полиэтилена

На сегодняшний день, к сожалению, маркетинговые ходы и рекламные уловки всё чаще влияют на различные технические решения и выбор в проект того или иного материала и оборудования. Всё чаще у проектировщиков вместо полноценного технического паспорта или каталога на оборудование на столе оказывается рекламные буклеты и брошюры, по которым он и производит подбор. То, что недопустимо писать в серьёзной технической литературе, перекочевывает на страницы таких буклетов. Зачастую маркетологи присваивают своему товару завышенные или вовсе несуществующие показатели, вводя инженеров в заблуждение. Как правило, незаурядные технические особенности оборудования в буклетах представляются как неоспоримые преимущества. И наоборот, любая техническая информация о конкурентной продукции представляется в виде существенных и неисправимых недостатков.

Все эти факторы в конечном cчете приводят к неверному выбору материалов и оборудования, что в итоге может привести к аварийной ситуации. Вина в этом случае ложится на плечи инженера-проектировщика, так как у любого производителя наряду с красочной рекламой, триумфально описывающей все прелести товара, имеются либо сноски мелким шрифтом, либо тщательно скрываемый от людского глаза технический паспорт с реальными данными. Чаще всего в рекламных брошюрах приводится информация, не противоречащая паспортным данным, но преподнесенная таким образом, что у людей создается ложное представление о реальных технических особенностях товара. Например, фразы «труба выдерживает температуру 95 ºС и давление 10 бар» и «труба выдерживает температуру теплоносителя 95 ºС при его давлении 10 бар в течение 50 лет» кардинально отличаются друг от друга. В первом случае загадана загадка: труба способна выдержать 95 ºС температуру теплоносителя и 10 бар одновременно, либо это две критические точки применения данной трубы? А самое главное – отсутствует временной показатель, то есть неизвестно, в течение какого времени трубопровод выдерживает данные параметры – пять минут, час или 50 лет?

В этой статье приведены основные маркетинговые уловки и мифы, распространяемые производителями труб из сшитого полиэтилена (PEX).

1-я группа мифов – о превосходстве одного способа сшивки над другим

Практически любой производитель труб из PEX утверждает, что именно способ сшивки их труб самый лучший, а прочие никуда не годятся. Только полиэтилен, сшитый по их методике, будет обладать повышенными прочностными характеристиками и показателями надёжности.

Для начала хотелось бы напомнить некоторые сведения о сшивке полиэтилена. Под сшивкой подразумевается создание пространственной решётки в полиэтилене высокой плотности за счёт образования объёмных поперечных связей между макромолекулами полимера. Относительное количество образующихся поперечных связей в единице объёма полиэтилена определяется показателем «степени сшивки». Степень сшивки – это отношение массы полиэтилена, охваченного трёхмерными связями к общей массе полиэтилена. Всего известно четыре промышленных способа сшивки полиэтилена, в зависимости от которых сшитый полиэтилен индексируется соответствующей литерой.

Таблица 1. Виды сшивки полиэтилена

Минимальная степень сшивки рабочего слоя

Вид способа по методу воздействия

Сшивка органическими пероксидами или гидропероксидами

Сшивка органическими силанидами (силанами)

Сшивка потоком элементарных частиц

Пероксидная сшивка (метод «a»)

Метод «a» является химическим способом сшивки полиэтилена при помощи органических пероксидов и гидропероксидов.

Органические пероксиды представляют из себя производные перекиси водорода (HOOH), в которых один или два атома водорода заменены органическими радикалами (HOOR или ROOR). Самый популярный пероксид, применяемый при производстве труб – dimethyl-2.5-di-(bytylperoxy)hexane. Пероксиды относятся к особо опасным веществам. Их получение – технологически сложный и дорогостоящий процесс.

Для получения PEX по методу «а» полиэтилен перед экструдированием расплавляется вместе с антиокислителями и пероксидами (процесс Томаса Энгеля), рис. 1.1. С повышением температуры до 180–220 ºС пероксид разлагается, образуя свободные радикалы (молекулы со свободной связью), рис. 1.2. Радикалы пероксидов забирают у атомов полиэтилена по одному атому водорода, что приводит к образованию свободной связи у атома углерода (рис. 1.3). В соседних макромолекулах полиэтилена атомы углерода, имеющие свободные связи, объединяются (рис. 1.4). Количество межмолекулярных связей составляет 2–3 на 1000 атомов углерода. Процесс требует жесткого контроля за температурным режимом в процессе экструзии, когда происходит предварительная сшивка, и в ходе дальнейшего нагревания трубы.

Метод «а» самый дорогой. Он гарантирует полный объёмный охват массы материала воздействием пероксидов, так как они добавляются в исходный расплав. Однако этот метод требует того, чтобы сшивка была не ниже 75 % (по российским нормам – не ниже 70 %), что делает трубы из данного материала более жёсткими по сравнению с другими способами сшивки.

Силановая сшивка (метод «b»)

Метод «b» является химическим способом сшивки полиэтилена при помощи органосиланидов. Органосиланиды представляют соединения кремния с органическими радикалами. Силаниды – ядовитые вещества.

В настоящее время для производства PEX-труб по методу «b» в основном используется винилтриметаксилоксан (H2C=CH)Si(OR)3 (рис. 2.1). При нагревании связи винильной группы разрушаются, превращая его молекулы в активные радикалы (рис. 2.2). Эти радикалы замещают атом водорода в макромолекулах полиэтилена (рис. 2.3). Затем полиэтилен обрабатывают водой либо водяным паром, органические радикалы при этом присоединяют молекулу водорода из воды и образуют стабильную гидроокись (органический спирт). Соседние радикалы полимера замыкаются через связь Si-O, формируя пространственную решётку (рис. 2.4). Вытеснение воды из PEX ускоряется при помощи оловянного катализатора. Процесс окончательной сшивки происходит уже в твёрдой стадии изделия.

Радиационная сшивка (метод «c»)

Метод «c» заключается в воздействии на группу C-H потоком заряженных частиц (рис. 3.1). Это может быть поток электронов или гамма-лучей. При таком воздействии часть связей C-H разрушается. Атомы углерода соседних макромолекул, у которых был выбит атом водорода, объединяются друг с другом (рис. 3.3). Облучение полиэтилена потоком частиц происходит уже после его формования, то есть в твёрдом состоянии. К недостаткам данного метода можно отнести неизбежную неравномерность сшивки.

Невозможно расположить электрод так, чтобы он был равноудалён ото всех участков облучаемого изделия. Поэтому полученная труба будет иметь неравномерную сшивку по длине и по толщине.

В качестве источника облучения чаще всего используется циклический ускоритель электронов (бетатрон), который относительно безопасен как в производстве, так и в применении готовой трубы.

Несмотря на это во многих европейских странах производство труб сшитых методом «с» запрещено.

Для удешевления процесса сшивки иногда используют в качестве источника излучения радиоактивный кобальт (Co60). Данный метод безусловно дешевле, так как труба просто помещается в камеру с кобальтом, однако безопасность использования таких труб весьма сомнительна.

Заблуждение № 1: «Сшивка перекидным способом (PEX-a) по прочности получаемого материала лучше прочих, потому что регламентированная минимальная степень сшивки для данного метода больше, нежели для остальных метолов. А чем больше степень сшивки PEX, тем прочнее материал»

Действительно, ГОСТ Р 52134 регламентирует различную минимальную допустимую степень сшивки труб из PEX для разных способов изготовления (табл. 1), и правда то, что при увеличении степени сшивки увеличивается прочность труб.

Однако сравнивать степени сшивки PEX-a, PEX-b и PEX-c недопустимо, так как образованные в результате сшивки молекулярные связи данных материалов имеют различную прочность, а следовательно даже сшитые до одной и той же степени данные виды полиэтилена будут иметь различную прочность. Энергия связи типа С-С, которая образуется в полиэтилене, сшитом методом «a» и «c» составляет порядка 630 Дж/моль, в то время как энергия связи типа Si-C, которая образуется в полиэтилене, сшитом методом «b» составляет 780 Дж/моль. На физико-химические и технические свойства влияет и взаимодействие макромолекул за счет водородных связей, возникающих в полимере вследствие наличия полярных групп и активных атомов, а также образование ассоциатов в результате взаимодействия самих поперечных связей. Это в первую очередь характерно для силанольносшитого полимера, где имеется большое число силанольных групп, способных образовывать дополнительные узлы зацепления в аморфных областях, повышающие плотность структурной сетки (которая на 30 % больше, чем при пероксидом, и в 2,5 раза – чем при радиационном сшивании) и уменьшающие деформируемость при высоких температурах.

Стендовые испытания труб из сшитых полиэтиленов показывают некоторое прочностное преимущество силановой сшивки. Так, при температуре испытания 90 °C для труб диаметром 25 мм и длиной 400 мм давление разрушения труб из РЕХ-а, PEX-b и РЕХ-с составило соответственно 1,72, 2,28 и 1,55 МПа (В.С. Осипчик, Е.Д. Лебедева, «Сравнительный анализ эксплуатационных свойств сшитых различными методами полиолефинов и улучшение физико-химических характеристик силанольносшитого полиэтилена», 24 мая 2011 г.).

Таким образом, заявления о том, что PEX-a является самым прочным материалом из-за большей степени сшивки, не соответствуют действительности. Данный фактор является скорее недостатком, нежели достоинством этого метода сшивки.

Метод сшивки – это не самый важный показатель трубы при её выборе. В первую очередь следует убедиться, что полиэтилен, из которого сделана труба, действительно сшит. Некоторые производители недосшивают или вовсе не сшивают трубу, при этом указывают на ней те же характеристики что и на качественные PEX трубы.

Например, в мае 2013 г. на территории Украины были выведены из оборота трубы фирмы GROSS. Под этой маркой распространялись трубы из сшитого полиэтилена, на самих трубах была маркировка PEX (рис. 4), но по факту эти трубы состояли из обычного несшитого полиэтилена, стоит ли говорить об их эксплуатационных характеристиках? Есть несложный способ определить, что перед вами – сшитый полиэтилен или подделка из обычного полиэтилена. Для этого кусочек трубы нужно нагреть до температуры 150–180 ºС, обычный полиэтилен при такой температуре теряет свою форму, а сшитый за счёт межмолекулярных связей сохраняет свою форму даже при таких высоких температурах (рис. 5).

Рис. 4. Маркировка на трубе Gross

Рис. 5. Трубы Gross (образец 7) и VALTEC PEX-EVOH (образец 6) поле прогрева в печи в течение 30 мин при температуре 180 ºС

Заблуждение № 2: «Только полиэтилен, сшитый по методу «a», обладает свойствами температурной памяти, полиэтилены сшитые другими способами данным свойством не обладают».

Что в данном случае подразумевается под «эффектом температурной памяти»? Суть данного эффекта заключается в том, что предварительно деформированная труба после прогрева восстанавливает свою исходную форму, которую она имела до деформации. Это свойство проявляется из-за того, что при изгибе и деформации молекулярно-связанные участки сжимаются или растягиваются, при этом накапливая внутреннее напряжение. После прогрева в местах деформации упругость материала снижается. Внутренние напряжения, накопленные в процессе деформации, создают в толще «размягшего» материала усилия, направленные в сторону исходной формы трубы. Под воздействием этих усилий трубы стремится восстановиться.

Рис. 6.1. Излом трубы VALTEC PEXEVOH (способ сшивки – PEX-b) и ее восстановление после прогрева до 100 °С

Рис. 6.2. Излом трубы из PEX-а с антидиффузионным слоем и ее восстановление после прогрева до 100 °С

Рис. 6.3. Излом трубы из PEXc без антидиффузионного слоя и ее восстановление после прогрева до 100 °С (неокрашенный сшитый полиэтилен при высоких температурах становиться прозрачным)

На рисунках 6.16.3 показано восстановление труб с различными способами сшивки после залома. При всех способах сшивки трубы восстановили свою первоначальную форму. На трубах, покрытых антидиффузионным слоем, после восстановления образовались складки. В этих местах антидиффузионный слой отслоился от слоя PEX. Это не влияет на характеристики трубы, так как рабочим слоем является слой PEX, который полностью восстановился.

Эффект памяти присущ любому сшитому полиэтилену. Отличие PEX-a в технике восстановления заключается лишь в том, что PEX-a сшивается во время экструзии, и первоначальная форма, которую стремится вернуть трубопровод, – прямая. PEX-b и PEX-с, как правило, сшиваются уже после формирования в бухты, и, соответственно, форма, к которой будут стремиться трубопроводы, – круг с радиусом, равным радиусу бухты.

Заблуждение № 3: «Сшивка методом «b» не обеспечивает требуемую гигиеничность труб, так как силаниды, применяемые при производстве данных труб, токсичны».

Действительно, кремневодороды (SiH4 – Si8H18), применяемые для получения PEX-b, крайне ядовиты. Однако кремневодороды для сшивки полиэтилена применяют только в кабельной промышленности. Для производства труб используется органосиланиды, которые тоже ядовиты, но их отличительной особенностью является то, что при сшивке они либо полностью переходят в химически связанное состояние, либо превращаются в химически нейтральный органический спирт, который вымывается при гидратации трубопроводов. На сегодняшний день самым распространённым реагентом для сшивки полиэтилена методом «b» является винилтриметаксилан (упрощенная формула: С2Н4Si (OR)3).

Основным показателем безопасности трубопровода и фитингов является гигиенический сертификат. Только трубы и фитинги, на которые есть данный сертификат, допустимы к установке в системах питьевого водоснабжения.

Заблуждение № 4: «Только у труб PEX-a степень сшивки равномерна по всему сечению, в то время как у других труб сшивка не равномерна».

Основным преимуществом сшивки методом «а» является то, что пероксиды добавляются в расплавленный полиэтилен до его экструзии в трубу, и сшивка трубы при должном внимании к температурам и дозировкам пероксидов будет равномерна.

Когда трубопроводы из сшитого полиэтилена массово не применялись, у сшивок методом «b» и «c» действительно существовал недостаток, заключающийся в неравномерности сшивки по длине и ширине трубопровода. Однако, когда объём производства труб достиг нескольких километров в неделю, возник вопрос о повышении качества и автоматизации данных видов сшивки. Силановым методом можно равномерно сшить трубопровод, подобрав правильную дозировку реактивов, точно поддерживая температурные и временные параметры обработки трубы, а также используя катализаторы (олово).

К тому же современный метод ввода силана отличается от первоначального, если раньше силан добавлялся в расплав полиэтилена при экструзии (метод В-SIOPLAST), то сейчас, как правило, силан предварительно смешивается с пероксидом и некоторым количеством полиэтилена и только потом добавляется в экструдер (метод В-MONOSIL).

Заводы, производящие большие объёмы труб, давно методом проб и ошибок вышли на идеальную технологию сшивки, а автоматизация производства позволила получать трубы со стабильными характеристиками. Таким образом, проблема неравномерной сшивки трубопровода остаётся только у мелких, неавтоматизированных производств.

Заблуждение № 5: «PERT является одним из видов сшитого полиэтилена, и не уступает ему по характеристикам».

Термостойкий полиэтилен PERT является сравнительно новым материалом, применяемым для производства труб. В отличие от обычного полиэтилена, у которого в качестве сополимера используется бутен, в PERT сополимером является октен (октилен С8H16). Молекула октена имеет протяжённую и разветвленную пространственную структуру. Образуя боковые ветви основного полимера, сополимер создаёт вокруг главной цепи область взаимопереплетённых цепочек сополимера. Эти ветви соседних макромолекул образуют пространственное сцепление не за счёт образования межатомных связей как у PEX, а за счёт сцепления и переплетения своих «ветвей»

Читайте также:  Причины и способы устранения протечки бойлера своими руками

Термоустойчивый полиэтилен обладает рядом свойств сшитого полиэтилена: стойкость к высоким температурам и ультрафиолетовым лучам. Однако данный материал не обладает долговременной стойкостью к высоким температурам и давлению, а также является менее кислотостойким, чем PEX. На рис. 7 представлены графики длительной прочности сшитого полиэтилена PEX и высокотемпературного полиэтилена PERT, взятые из ГОСТ Р 52134-2003 с изменением № 1. Как видно из графиков, сшитый полиэтилен со временем мало теряет в своей прочности, даже при высоких температурах. При этом график падения прочности прямой и легкопрогнозируемый. У PERT график имеет излом, причём при высоких температурах этот излом наступает уже через два года эксплуатации. Точка излома называется критической, при достижении этой точки материал начинает активно ускорять потерю прочности. Всё это приводит к тому, что труба, которая достигла критической точки, очень быстро выходит из строя.

Рис. 7. Эталонные кривые длительной прочности труб из PEX (слева) и PERT (справа)

К тому же из-за отсутствия связей между макромолекулами PERT не обладает свойствами температурной памяти.

Заблуждение № 6: «PEX-трубы безоговорочно можно использовать для систем радиаторного отопления».

Условия применимости пластиковых и металлопластиковых трубопроводов на территории Российской Федерации регламентируются ГОСТ 52134-2003. Так как на прочность пластиковых трубопроводов довольно ощутимо влияет время воздействия на них теплоносителя с определённой температурой, то для них установлены классы эксплуатации (табл. 2), которые отражают характер воздействия определённых температур на трубу в течение всего срока эксплуатации.

Свойства полиэтилена, применяемого для изготовления труб и фитингов

Свойства полиэтилена (ПЭ) имеют широкое многообразие, но особо можно выделить два: высокую химическую стойкость и неспособность вступать в электрохимические реакции, благодаря чему исключается возможность появления коррозии, присущей стали. Далее приведены Свойства полиэтилена, наиболее полно характеризующие полиэтилен как материал, применяемый для изготовления труб и соединительных деталей.

Свойства полиэтилена — Плотность

Свойства полиэтилена во многом определяются его плотностью. В российских и международных стандартах принята следующая классификация ПЭ по группам плотности, кг/м3:

— ПНП (ПВД) — полиэтилен низкой плотности (полиэтилен высокого давления) — 910-925;
— ПСП (ПСД) — полиэтилен средней плотности (полиэтилен среднего давления) — 926-940;
— ПВП (ПНД) — полиэтилен высокой плотности (поли-этилен низкого давления) — 941-965.

Полимеризацией при высоком давлении получают разветвленный ПНП. Полимеризацией при низком давлении различными методами (газофазный, суспензионный, в растворе) получают линейный полиэтилен. При этом за счет введения сополимеров может быть получен ПЭ различной плотности — от 920 до 960 кг/м3.

Свойства полиэтилена

Отечественные трубные марки ПНД производятся газофазным методом с использованием бутена-1 в качестве сополимера. Полимеризацией при низком давлении может быть получен ПСП. Внешне трубы из ПНД и ПВД ничем не отличаются, поэтому при отсутствии маркировки или паспорта (документа о качестве) на трубы отличить их довольно трудно.

Если имеются два отрезка трубы — из ПНД и ПВД — одного наружного диаметра с одинаковой толщиной стенки, то при приложении равных нагрузок труба из ПНД сплющивается в меньшей степени. Труба из ПНД более твердая, чем труба из ПВД, при проведении по ней ногтем обычно остается малозаметная царапина, тогда как на поверхности трубы из ПВД она более заметна. При ударе о твердую поверхность детали из ПВД издают глухой звук, а детали из ПНД — относительно звонкий звук.

Высокая плотность и монолитность соединения могут быть получены только при сварке деталей из одного вида и марки термопласта. Трубы из ПЭ, ПП или ПБ, сваренные между собой, не образуют прочного соединения и легко разрушаются при механическом воздействии.

Стойкость к климатическому (атмосферному) старению

Полиэтилен чувствителен к ультрафиолетовым лучам и теплу. Под их воздействием изменяются его цвет и механические характеристики, т.е. он становится более твердым и хрупким. Эти изменения происходят не сразу и становятся заметными только после года хранения труб на открытом воздухе, на солнце и в неблагоприятных климатических условиях. Так как трубы укладываются в траншеи, то опасность атмосферного старения полиэтилена становится минимальной.

Свойства полиэтилена — Стойкость к температурным воздействиям

При температурном воздействии, особенно длительном, полиэтилен в изделии становится более «эластичным», т.е. легко поддающимся деформированию при приложении к нему механических нагрузок. Обычно ПЭ трубы рассчитываются исходя из прочности материала при температуре 20 °С. Если температура ниже этого значения, то проность, как правило, повышается. Это повышение прочности, чаще всего, не учитывается при назначении эксплуатационных параметров трубопровода, но сам факт повышения прочности ПЭ увеличивает коэффициент запаса прочности трубы.

Температура плавления полиэтилена, при которой он переходит из твердого состояния в расплавленное, составляет от 115 до 130 °С. Температура начала размягчения — 110 °С. Температура хрупкости — минус 70 °С.

Свойства полиэтилена — Прочность при растяжении

Значение предела текучести при одноосном растяжении является весьма важной характеристикой ПЭ, т.к. оно указывает о том предельном состоянии материала, по достижении которого в термопласте возникают необратимые деформации. Среднее значение предела текучести ПНП, ПСП и ПВП составляет от 11,0 до 28,0 МПа. Относительное удлинение полиэтилена при пределе текучести составляет 16 %. Разрушающее напряжение — предел прочности при растяжении, составляет более 30,0 МПа.

Относительное удлинение полиэтилена при разрыве

Свойства полиэтилена, значение относительного удлинения при разрыве полиэтилена составляет от 300 до 1000 % при скорости растяжения от 50 до 100 мм/мин и температуре 20 °С. Конкретное значение удлинения при разрыве зависит от скорости растяжения и температуры.

Линейное расширение

Коэффициент линейного расширения полиэтилена в десять раз превышает соответствующий коэффициент для стали. Для полиэтилена он составляет 0,12-0,20 мм/(м-°С), тогда как у стали — 0,011 мм/(м-°С). Это следует учитывать при прокладке трубопроводов из ПЭ труб и соблюдать меры предосторожности.

Релаксационные Свойства полиэтилена

Если ПЭ подвергнуть длительному внешнему воздействию, то со временем внутреннее напряжение ПЭ в изделии уменьшается, т.к. материал как бы адаптируется к новому состоянию — более равновесному.

Свойства полиэтилена — Диффузионная проницаемость

Полиэтилен не является абсолютно герметичным по отношению к диффузионной проницаемости, особенно газов, которая повышается с увеличением температуры. Однако диффузионная проницаемость ПЭ чрезвычайно мала и составляет для газа при давлении до 0,3 МПа — 0,6 м3 на один километр в течение года.

Теплоизоляционные свойства полиэтилена

ППолиэтилен обладает хорошими теплоизоляционными свойствами. Тем не менее, для подземных трубопроводов теплоизоляционные характеристики грунта не менее значимы, чем аналогичные свойства самой полиэтиленовой трубы. Коэффициент теплопроводности полиэтилена составляет в среднем 0,22-0,4 Вт/(м-°С).

Стойкость к химическим веществам полиэтилена

Полиэтилен в изделии обладает хорошей стойкостью к воздействию различных агрессивных химических веществ: азотной кислоты различной концентрации, аммиака (газообразного, сухого, 100%-го, чистого, водного раствора, насыщенного на холоде), технического ацетона, бензина, винной кислоты, любого вина, воды (дистиллированной, деминерализованной, обессоленной, минеральной, морской), солей калия, сжатого воздуха, содержащего масла, солей меди и магния, отходящих газов систем канализации и др., содержащих диоксид углерода, соляную кислоту, диоксид серы, ртуть, сероводород, серу, мочевину, мыльный раствор и пр.

Обладает относительной стойкостью в концентрированной (более 50%) азотной кислоте, бензоле и некоторых других ароматических углеводородах.

Свойства полиэтилена — Горючесть

Свойства полиэтилена при контакте с огнем полиэтилен быстро загорается, плавится и стекает каплями. Пламя при горении — синее, слабосветящееся, с запахом затухающей свечи.

Наиболее опасными токсичными газами, образующимися при сгорании полиэтилена, являются углерода оксид (СО), водорода хлорид (HCI) и углерода диоксид (СО2). Количество СО, выделяющегося при термическом разложении полиэтилена, составляет 9-12 %.

Диоксид углерода в малых концентрациях не представляет большой опасности: его концентрацию 1,5 % в воздухе человек переносит без вреда для организма, но при концентрациях 3,0-4,5 % этот газ становится опасным для жизни человека при получасовом вдыхании. В настоящее время в нашей стране отсутствуют нормативные документы, регламентирующие критические концентрации СО, СО2, HCI и О2 при пожаре. В связи с этим для оценки пожарной опасности пластмассовых трубопроводов литературными источниками рекомендуются следующие критические концентрации: СО — 0,1 %, СО2 — б %, HCI — 5 % и О2 — 17 %.

В качестве замедлителей горения полиэтилена применяются хлор- и бромсодержащие органические соединения. В качестве средств пожаротушения применяются: тонко распыленная вода, вода с добавками поверхностно-активных веществ, пена, огнетушащие порошки, асбестовое полотно и др.

Санитарно-гигиенические свойства

Из полиэтилена в воду могут выделяться некоторые химические вещества в концентрациях, не превышающих предельно допустимую (ПДК). Мигрирующие соединения, как правило, не придают воде привкусов и запахов, но могут вызывать образование быстроисчезающей пены при взбалтывании водных вытяжек.

Для светостабилизации полиэтилена применяют различные сорта сажи, содержащие до 0,5 мг/кг бензопирена. Количество сажи в полиэтилене не должно превышать 2,5 %. Исследования показали допустимость использования труб из ПЭ для транспортирования хлорированной воды. При этом не отмечено значительного увеличения хлоропоглощаемости.

ПНД может выделять в воду те же вещества, что и ПВД, но кроме того — остатки комплексных металлоорганических катализаторов и растворителей. Трубы из ПЭ, облученные дозами ускоренных электронов или лучами, не изменяют вкуса и запаха соприкасающейся с ними воды и не повышают ее окисляемость.

Установлено, что увеличение числа бактерий в стоячей воде, находящейся в ПЭ трубах, вызвано их размножением вследствие органических загрязнений, имеющихся в воде, а не влиянием полимерного материала. Посев бактериальных культур, выделенных из водопроводной воды, в минеральную среду с полиэтиленом порошками различной молекулярной массы в качестве единственного источника углерода доказал, что эти микроорганизмы не в состоянии употреблять полиэтилен. ПВД не влияет на выживаемость в воде кишечной палочки. Таким образом, основным ограничением при использовании полиэтилена в контакте с питьевой водой является опасность изменения ее органолептических Свойства полиэтилена, в основном запаха.

Полиэтилен: свойства, области применения и структура потребления

Полиэтилен (ПЭ) относится к группе полиолефинов, которые представляют собой самый распространенный тип полимеров получаемых реакциями полимеризации и сополимеризации непредельных углеводородов (этилена, пропилена, бутилена и других альфа-олефинов). Химическая структура молекулы полиэтилена проста и представляет собою цепочку атомов углерода, к каждому из которых присоединены две молекулы водорода.

Полиэтилен низкого давления производства СИБУР

Свойства полиэтилена зависят от использованного метода полимеризации. Стандарт ISO 1872 классифицирует полиэтилен по плотности и показателю текучести расплава (ПТР). В России полиэтилен классифицируется по СТ СЭВ 3659-82.

В зависимости от технологии полимеризации этилена, полиэтилен имеет различную плотность и классифицируется на полиэтилен низкой плотности (ПЭНП), полиэтилен высокой плотности (ПЭВП), линейный полиэтилен низкой плотности (ЛПЭНП) и др.

Полиэтилен низкой плотности (ПЭНП) производится при высоком давлении от 1000 до 3000 атмосфер путем полимеризации с добавлением радикала этилена при температуре от 150 до 275 °С, где инициатором служит кислород. В России често применяется устаревшая аббревиатура – ПВД, которая означает, что полиэтилен был произведен при высоком давлении.

Полиэтилен высокой плотности (ПЭВП) производится путем полимеризации этилена при низком от 1 до 50 бар или среднем давлении от 30 до 40 атмосфер и температуре от 85° до 180 °С при помощи катализаторов Циглера-Натта (оксид хрома или оксид алюминия) и органического растворителя (анионная полимеризация). В России често применяется устаревшая аббревиатура – ПНД, которая означает, что полиэтилен был произведен при низком давлении.

Линейный полиэтилен низкой плотности (ЛПЭНП) получают на оборудовании синтеза ПЭНП с помощью высокопроизводительных систем катализаторов, путем полимеризации этилена при давлении в 30-40 атмосферах и температуре около 150 °С.

Относительно недавно начала применяться технология, где используются так называемые металлоценовые (ПЭ-М) катализаторы, которые позволяют добиться более высокой молекулярной массы полимера, это помогает увеличивает прочность изделия.

Химические и физические свойства полиэтилена

Полиэтилен [–СН2-СН2–]n существует в двух модификациях, отличающихся по структуре и по свойствам. Обе модификации получаются из этилена СН2=СН2. В одной из форм мономеры связаны в линейные цепи со степенью полимеризации (СП) обычно 5000 и более, а в другой – разветвления из 4-6 углеродных атомов присоединены к основной цепи случайным способом. Линейные полиэтилены производятся с использованием особых катализаторов, полимеризация протекает при умеренных температурах (до 150 0С) и давлениях (до 20 атм.).

Полиэтилен — термопластичный полимер, непрозрачен в толстом слое, кристаллизуется в диапазоне температур от минус 60 °С. Он смачивается водой, при комнатной температуре не растворяется в органических растворителях, а при температуре выше 80 °С сначала набухает, а затем растворяется в ароматических углеводородах и их галогенопроизводных.

ПЭ устойчив к действию водных растворов солей, кислот, щелочей, но при температурах выше 60 °С серная и азотная кислоты быстро его разрушают. Кратковременная обработка ПЭ окислителем (например, хромовой смесью) приводит к окислению поверхности и смачиванию ее водой, полярными жидкостями и клеями. В этом случае изделия из ПЭ можно склеивать.

По своей структуре и свойствам ПЭНП, ПЭВП и ЛПЭНП отличаются, и применяются для различных задач. ПЭНП более мягкий, а ПЭВП и ЛПЭНП имеют жесткую структуру. Также отличия проявляются в плотности, температуре плавления, твердости, и прочности.

Сравнительная характеристика ПЭНП и ПЭВП

Полиэтилен

Молекулярная масса, г/моль

Плотность, г/см3

Температура плавления, 0С

Модуль упругости, МПа

V раст., МПа

Относ. удлинение, %

Низкой плотности (высокого давления)

Высокой плотности (низкого давления)

Наряду с кристаллической фазой всегда имеется аморфная, содержащая недостаточно упорядоченные участки макромолекул. Соотношение этих фаз зависит от способа получения ПЭ и условии его кристаллизации. Оно определяет и свойства полимера. Пленки из ПЭНП в 5-10 раз более проницаемы, чем пленки из ПЭВП.

Механические показатели ПЭ возрастают с увеличением плотности (степени кристалличности) и молекулярной массы. В виде тонких пленок ПЭ (особенно полимер низкой плотности) обладает большей гибкостью и некоторой прозрачностью, а в виде листов приобретает большую жесткость и непрозрачность.

Полиэтилен устойчив к ударным нагрузкам. Среди наиболее важных свойств полиэтилена можно отметить морозостойкость. Они могут эксплуатироваться при температурах от –70°С до 60 °С (ПЭНП) и до 100 °С (ПЭВП), некоторые марки сохраняют свои ценные свойства при температурах ниже –120°С.

Читайте также:  Нормы температуры горячей воды в жилых домах

Существенным недостатком полиэтилена является его быстрое старение, которое останавливают с помощью специальных добавок — противостарителей (фенолы, амины, газовая сажа). Показатель текучести расплава ПТР у ПЭНП выше, чем ПЭВП, поэтому он перерабатывается в изделия легче.

По электрическим свойствам ПЭ, как неполярный полимер, относится к высококачественным высокочастотным диэлектрикам, диэлектрическая проницаемость и тангенс угла диэлектрических потерь мало изменяются с изменением частоты электрического поля, температуры в пределах от минус 80 °С до 100 °С и влажности. Однако остатки катализатора в ПЭВП повышают тангенс угла диэлектрических потерь, особенно при изменении температуры, что приводит к некоторому ухудшению изоляционных свойств.

Области применения полиэтилена

Полиэтилен высокой плотности (ПЭВП)

ПЭВП имеет теплостойкость отдельных марок до 110 °С и допускает охлаждение до –80 °С. Температура плавления марок: 120–135 °С, а температура стеклования: около –20 °С. ПЭВП дает блестящую поверхность и характеризуется хорошей ударной прочностью и большей теплостойкостью по сравнению с ПЭНП.

Свойства ПЭВП сильно зависят от плотности материала. Увеличение плотности приводит к повышению прочности, жесткости, твердости, химической стойкости. В то же время при увеличении плотности снижается ударопрочность при низких температурах, удлинение при разрыве, проницаемость для газов и паров.

У ПЭВП наблюдается высокая ползучесть при длительных нагрузках. Он имеет очень высокую химическую стойкость (больше, чем у ПЭНП) и обладает отличными диэлектрическими характеристиками. Биологически инертен. Легко перерабатывается.

Характеристики марочного ассортимента ПЭВП

(минимальные и максимальные значения для промышленных марок)

Показатели, ( при 23 °С)

Значения для ненаполненных марок

Полиэтилен высокой плотности применяется преимущественно для выпуска тары и упаковки. За рубежом примерно третья часть выпускаемого полимера используется для изготовления контейнеров выдувным формованием (емкости для пищевых продуктов, парфюмерно-косметических товаров, автомобильных и бытовых химикатов, топливных баков и бочек).

При этом стоит отметить, что по сравнению с другими областями, опережающими темпами растет использование ПЭВП для производства упаковочных пленок. ПЭВП находит также применение в производстве труб и деталей трубопроводов, где используются такие достоинства материала как долговечность (срок службы — 50 лет), простота стыковой сварки, дешевизна (в среднем на 30% ниже по сравнению с металлическими трубами).

Полиэтилен низкой плотности (ПЭНП)

Полиэтилен низкой плотности отличается теплостойкостью без нагрузки до 60°С (для отдельных марок до 90 °С) и допускает охлаждение различных марок в диапазоне от –45 до –120 °С).

Свойства ПЭНП сильно зависят от плотности материала. Увеличение плотности приводит к повышению прочности, жесткости, твердости, химической стойкости. В то же время при увеличении плотности снижается ударопрочность при низких температурах, удлинение при разрыве, трещиностойкость, проницаемость для газов и паров. ПЭНП склонен к растрескиванию при нагружении и не отличается стабильностью размеров.

ПЭНП обладает отличными диэлектрическими характеристиками, имеет очень высокую химическую стойкость, не стоек к жирам, маслам, не стоек к УФ-излучению, отличается повышенной радиационной стойкостью и биологически инертен. Легко перерабатывается.

Характеристики марочного ассортимента ПЭНП

Показатели, (при 23 °С)

Значения для ненаполненных марок

Полиэтилен низкой плотности используется в основном в производстве пищевых, технических, сельскохозяйственных пленок и для изоляции трубопроводов. В последние годы за рубежом наиболее активно растет объем потребления ПЭНП и производства линейного полиэтилена низкой плотности, который в ряде зарубежных стран в значительной степени вытеснил из основных сегментов рынка ПЭНП.

Линейный полиэтилен низкой плотности (ЛПЭНП)

ЛПЭНП имеет теплостойкость до 118 °С и большую стойкость к растрескиванию, ударную прочность и теплостойкость, чем полиэтилен низкой плотности (ПЭНП), биологически инертен. ЛПЭНП дает меньшее коробление и большую стабильность размеров, чем ПЭНП. Легко перерабатывается.

Характеристики марочного ассортимента

Показатели, (при 23 °С)

Значения для ненаполненных марок

Структура потребления полиэтилена

Комплекс физико-механических, химических и диэлектрических свойств полиэтилена определяет его потребительские свойства и позволяет широко применять во многих отраслях промышленности (кабельной, радиотехнической, химической, легкой, медицине и др.).

Кабель с изоляцией из полиэтилена имеет преимущества по срав¬нению с каучуковой изоляцией. Он легок, более гибок и обладает большей электрической прочностью. Провод, покрытый тонким слоем полиэтилена, может иметь верхний слой из пластифицированного поливинилхлорида, образующего хорошую механическую защиту от повреждений.

В производстве кабелей находит применение ПЭНП, сшитый небольшими количествами (1-3 %) органических перекисей или облученный быстрыми электронами.

Пленки и листы. Пленки и листы могут быть изготовлены из ПЭ любой плотности. При получении тонких и эластичных пленок более широко применяется ПЭНП.

листы ПЭ

Пленки изготовляются двумя методами: экструзией расплавленного полимера через кольцевую щель с последующим раздувом или экструзией через плоскую щель с последующей вытяжкой. Они выпускаются толщиной 0,03-0,30 мм, шириной, до 1400 мм (в некоторых случаях до 10 м) и длиной до 300 м.

Кроме тонких пленок, из ПЭ изготовляют листы толщиной 1-6 мм и шириной до 1400 мм, Их применяют в качестве футеровочного и электроизоляционного материала и перерабатывают в изделия технического к бытового назначения методом вакуумного формования.

Большая часть продукции из ПЭНП служит упаковочным материалом, конкурируя с другими пленками (целлофановой, поливинилхлоридной, поливинилиденхлоридной, поливинилфторидной, полиэтилентерефталатнсй, из поливинилового спирта и др.), меньшая часть используется для изготовления различных изделий (сумок, мешков, облицовки для ящиков, коробок и других видов тары).

Широко применяются пленки для упаковки замороженного мяса и птицы, при изготовлении аэростатов и баллонов для проведения метеорологических и других исследований верхних слоев атмосферы, защиты от коррозии магистральных нефте- и газопроводов. В сельском хозяйстве прозрачная пленка используется для замены стекла в теплицах и парниках. Черная пленка служит для покрытия почвы в целях задержания тепла при выращивании овощей, плодово-ягодных и бобовых культур, а также для выстилания силосных ям, дна водоемов и каналов. Все больше применяется полиэтиленовая пленка в качестве материала для крыш и стен при сооружении помещений для хранения урожая, сельскохозяйственных машин и другого оборудования.

Из полиэтиленовой пленки изготовляют предметы домашнего обихода: плащи, скатерти, гардины, салфетки, передники, косынки и т. п. Пленка может быть нанесена с одной стороны на различные материалы: бумагу, ткань, целлофан, металлическую фольгу.

Армированная полиэтиленовая пленка отличается большей прочностью, чем обычная пленка такой же толщины. Материал состоит из двух пленок, между которыми находятся армирующие нити из синтетических или природных волокон или редкая стеклянная ткань.

Из очень тонких армированных пленок изготовляют скатерти, а также пленки для теплиц; из более толстых пленок — мешки и упаковочный материал. Армированная пленка, упрочненная редкой стеклянной тканью, может быть применена для изготовления защитной одежды и использована в качестве обкладочного материала для различных емкостей.

На основе пленок из ПЭ могут быть изготовлены липкие (клеящие) пленки или ленты, пригодные для ремонта кабельных линий вы¬сокочастотной связи и для защиты стальных подземных трубопроводов от коррозии. Полиэтиленовые пленки и ленты с липким слоем содержат на одной стороне слой из низкомолекулярного полиизобутилена, иногда в смеси с бутилкаучуком. Выпускаются они толщиной 65-96 мкм, шириной 80-I50 мм.

ПЭНП и ПЭВП применяют и для защиты металлических изделий от коррозии. Защитный слой наносится методами газопламенного и вихревого напыления.

Полиэтиленовые трубы. Из всех видов пластмасс ПЭ нашел наибольшее применение для изготовления экструзии и центробежного литья труб, характеризующихся легкостью, коррозионной стойкостью, незначительным сопротивлением движению жидкости, простотой монтажа, гибкостью, морозостойкостью, легкостью сварки.

Непрерывным методом выпускаются трубы любой длины с внутренним диаметром 6-300 мм при толщине стенок 1,5-10 мм. Полиэтиленовые трубы небольшого диаметра наматываются на барабаны. Литьем под давлением изготовляют арматуру к трубам, которая включает коленчатые трубы, согнутые под углом 45 и 90 град; тройники, муфты, крестовины, патрубки. Трубы большого диаметра (до 1600 мм) с толщиной стенок до 25 мм получают методом центробежного литья.

Полиэтиленовые трубы вследствие их химической стойкости и эластичности применяются для транспортировки воды, растворов солей и щелочей, кислот, различных жидкостей и газов в химической промышленности, для сооружения внутренней и внешней водопроводной сети, в ирригационных системах и дождевальных установках.

Трубы из ПЭНП могут работать при температурах до 60 0С, а из ПЭВП — до 100 0С. Такие трубы не разрушаются при низких температурах (до – 60 0С) и при замерзании воды; они не подвержены почвенной коррозии.

Выдувные и литьевые изделия. Из полиэтиленовых листов, полученных экструзией или прессованием, можно изготовить различные изделия штампованием, изгибанием по шаблону или вакуумформованием. Крупногабаритные изделия (лодки, ванны, баки и т. п.) также могут быть изготовлены из порошка полиэтилена путем его спекания на нагретой форме. Отдельные части изделий могут быть сварены при помощи струи горячего воздуха, нагретого до 250 0С.

Формованием и сваркой можно изготовить вентили, колпаки, конейнеры, части вентиляторов и насосов для кислот, мешалки, фильтры, различные емкости, ведра и т. п.

Одним из основных методов переработки ПЭ в изделия является метод литья под давлением. Большое распространение в фармацевтической и химической промышленности получили бутылки из полиэтиле¬на объемом от 25 до 5000 мл, а также посуда, игрушки, электротехнические изделия, решетчатые корзины и ящики.

Выбор того или иного технологического процесса определяется в первую очередь необходимостью получения марочного ассортимента с определенным комплексом свойств. Суспензионный метод целесообразен для производства полиэтилена трубных марок и марок полиэтилена, предназначенного для переработки экструзионным методом, а также для производства высокомолекулярного полиэтилена.

С привлечением растворных технологий получают ЛПЭНД, для высококачественных упаковочных пленок, марки полиэтилена для изготовления изде¬лий методами литья и ротационного формования. Газофазным методом производят марочный ассортимент полиэтилена, предназначенный для изготовления товаров народного потребления.

Производство полиэтиленовых труб – раскрываем все особенности

Трубы напорные и безнапорные различных диаметров, фасонные изделия, трубы-оболочки – вот основная продукция, которую выпускает современное производство полиэтиленовых труб. Широкий спрос на данный вид пластиковых труб породил массу производственных цехов по изготовлению ПЭ труб, при этом принцип изготовления в большинстве случаев используется один и тот же.

Рассмотрим, каким образом выглядит линия по производству полиэтиленовых труб, а также каков непосредственно технологический процесс изготовления труб.

производство полиэтиленовых труб

Производственный цех полиэтиленовых труб

Оборудование для производства труб из полиэтилена

Как правило, производство труб полиэтиленовых ведется на линиях, состоящих из следующего набора оборудования:

  1. Автоматического загрузчика и сушки полиэтиленовых гранул.
  2. Нагревательного экструдера, оснащенного шнеком и матричной головкой (калибраторами), служащей для формирования заготовки трубы.
  3. Вакуумных калибровочных ванн.
  4. Ванн водяного охлаждения заготовки трубы из полиэтилена.
  5. Тянущего устройства, служащего для транспортировки заготовки трубы по технологической линии.
  6. Коронатора для повышения адгезии внутренних поверхностей труб-оболочек.
  7. Планетарной пилы для выполнения резки труб под определенную длину.
  8. Пневматического укладчика для укладки труб на накопительный стеллаж.
  9. Шкафов управления производственной линией.
  10. Маркиратора, осуществляющего маркировку на трубной продукции из полиэтилена.
  11. Системы контроля ультразвуком, необходимой для контроля геометрических размеров труб (диаметра и толщины стенки).

Описанная выше линия и оборудование для производства полиэтиленовых труб использует метод экструзии – самый популярный на данный момент.

Доставку на производственную линию сырья-гранулята осуществляют со склада посредством автопогрузчика. Разгрузку осуществляют в накопительный бункер для сушки и подачи гранул в экструдер.

При помощи такой типовой линии выполнятся производство труб из полиэтилена, а также фасонных деталей следующих диаметров:

  • Труб напорных 125-1200 мм диаметром для водопроводов.
  • Труб напорных 125-315 мм диаметром для газопроводов.
  • Полиэтиленовых труб-оболочек 125-1200 мм диаметром.

оборудование для производства труб полиэтиленовых

Оборудование для производства труб полиэтиленовых

Прокладка в земле – основные правила

ПНД трубы выпускают двумя способами, диаметром от 20 до 110 мм в бухтах по 100 и 200 метров, трубы диаметром от 110 до 1200 мм в отрезках по 12 — 13 метров (отдельно по согласованию с заводом изготовителем можно заказать трубы диаметром от 63 до 90 мм тоже в отрезках).

В зависимости от диаметра и форме выпуска труб их прокладывают также двумя способами. Если труба в бухте, ее сразу укладывают на подготовленное дно траншеи. Если труба в отрезках, то ее сначала раскладывают вдоль траншеи, затем стыкуют, одним из описанных выше способом, а уже затем кладут готовую плеть на дно траншеи.

За границей для укладки ПЭ магистралей используют специальные передвижные установки. На них помешают бобину с намотанной ПНД-трубой, установку тащит за собой грузовик. Трубоукладчик специальным плугом прорезает в грунте канал, укладывает трубопровод и сразу засыпает землей (принцип работы кабелеукладчика). Понятно, что производительность такой установки в разы превышает другие механические методы, связанные с рытьем канав тяжелой спецтехникой.

При укладке ПНД магистралей рекомендуется соблюдать следующие правила:

  • Благодаря большой длине, гибкости и эластичности ПНД-труб все операции по их стыковке проводят наверху, после чего трубопровод опускают в траншею. Благодаря этому габаритные размеры канавы не столь велики.
  • Дно траншей должно быть ровным, без валунов и камней. При очень рыхлых грунтах его утрамбовывают.
  • Если велика вероятность вымывания почвы из-под магистрали, на дно и стенки канала укладывают геотекстильное полотно.

Схема траншейной укладки ПНД-трубопровода

Рис. 13 Схема траншейной укладки ПЭ-трубопровода

  • Расстояние между трубной оболочкой и стенками траншеи зависит от ее диаметра и берется равным не менее 200 мм для трубных изделий размером до 225 мм. Для крупногабаритных трубопроводов диаметрами около 1200 мм боковое расстояние принимают равным не менее 500 мм.
  • Под трубопроводом должна находиться песчаная подушка толщиной 100 — 150 мм и шире его не менее, чем на 200 мм.
  • Радиус загиба трубы при укладке зависит от SDR и примерно составляет 25 ее диаметров при средней температуре среды, и 35 в условиях низких наружных температур.
  • Глубина залегания трубопроводной магистрали зависит от условий эксплуатации (наружной нагрузки) и физической прочности труб (напорных параметров).

Рис. 14 Траншейная прокладка ПНД магистрали



Описание технологического процесса изготовления ПЭ труб

Технология производства труб полиэтиленовых методом экструзии на линии непрерывного действия закрытого выглядит следующим образом:

  1. После подачи гранул из накопительного бункера в экструдер они расплавляются, и при помощи шнека вязкая масса отправляется в головку экструдера.
  2. Именно в экструзионной головке с помощью высокого давления производится придание будущим изделиям размера и формы из расплавленной полимерной массы.
  3. Затем сформированная заготовка отправляется в зону вакуумной калибровки, в которой калибруется (делается более точным) диаметр трубы, а также ее частичное охлаждение.
  4. Далее технология производства полиэтиленовых труб предусматривает прохождение трубы через ряд охлаждающих ванн, где ее температура нормализуется.
  5. После этого при помощи планетарной пилы производится резка на уже готовые к использованию изделия.
  6. Затем на трубы наносится маркировка, и готовые к реализации изделия складываются на стеллажи, откуда транспортируются на склад готовой продукции.
Читайте также:  Сверло по бетону для дрели и перфоратора

За соблюдением всех составляющих технологического процесса следит специальный логический контроллер, который контролирует наличие сырья, температурные режимы на каждом этапе производства, работоспособность всех узлов. При возникновении неполадки он автоматически останавливает работу линии и сообщает оператору о возникшей проблеме.

Трубы из полиэтилена

Трубы из полиэтилена

Трубы из полиэтилена пришли, можно сказать, совсем недавно на смену металлическим трубопроводам, используемым во всевозможных коммуникационных системах. Они не ржавели, как стальные, стоили намного дешевле чугунных, легко монтировались и сохраняли качество воды. Более того, с изобретением новых модификаций полиэтилена пластиковые трубы смогли вытеснить металл даже в применении к таким достаточно проблемным трубопроводным сетям, как системы отопления.

Основные свойства

Основой пластиковой трубы является полиэтилен – термопластичный полимер, который не боится естественного разрушения, свойственного природным материалам. Изделия, изготовленные из него, обладают массой свойств, отличающих их от продукции из иных материалов.

Преимущества

Главные преимущественные особенности исходят из свойств полимера, входящего в основу трубы:

  • Труба ПЭ не гниёт, не поддается действию грибка и коррозии,
  • Полиэтилен не реагирует с химически активными веществами, такими как кислоты, щелочи и даже масла,
  • Благодаря пластичности полиэтиленовая труба не трескается при замерзании жидкости в ней,
  • Она устойчива к деформациям растяжения и сжатия,
  • Способна выдерживать даже большой напор воды (гидроудар),
  • Обладает свойством шумопоглощения, при котором становятся незаметными звуки переливания жидкостей внутри трубных систем,
  • Имеет очень продолжительный срок эксплуатации, достигающий 100 лет и более,
  • Стоит намного дешевле труб из других материалов.

Кроме этого, трубы из полиэтилена очень лёгкие, что даёт две дополнительных возможности:

  1. Монтаж коммуникаций из них можно выполнить без особых физических усилий и опыта работы,
  2. Они не требуют установки дополнительного крепежа и усиления основы крепления, поэтому могут устанавливаться даже у перегородок из гипсокартона и подобных материалов.

Недостатки

Недостатков у труб из полиэтилена всего два, которые верны при появлении определенных условий:

Полиэтиленовые трубы

  • Трубы ПЭ плохо переносят солнечные лучи, поэтому их рекомендуется использовать при установке защитных оболочек либо помещении. Также для преодоления этого недостатка часто к составу труб подмешивают вещества, увеличивающие стойкость к ультрафиолету.
  • Полиэтилен плохо переносит повышенные температуры, поэтому большинство полиэтиленовых труб плавятся при температуре выше 100 0C.

ИНТЕРЕСНО! Современный полиэтилен смог преодолеть неудобства, доставляемые его термопластичностью. Пластиковые трубы, изготовленные из «суперматериала» нового поколения – так называемого «сшитого» полиэтилена, не боятся повышения температуры даже более 150 0C.

Изготовление ПЭ труб

Материалы

Основным материалом для изготовления пластиковых труб служит полиэтилен – полимер углеводорода этилена, получаемый под давлением в специальных автоклавах, при высоких температурах и в присутствии катализаторов. В зависимости от применяемой технологии, он может быть:

  • Низкой плотности, получаемый при очень высоком давлении (ПВД),
  • Высокой плотности, который получают при низком давлении (ПНД),
  • Сверхвысокой плотности, известный как «сшитый полиэтилен».

При этом плотность исходного материала напрямую связана со свойствами получаемых изделий: чем она больше, тем тверже и прочнее конечный продукт. Так, полиэтиленовые трубы ПНД имеют более высокую температуру эксплуатации, чем изделия ПВД, а также большую устойчивость к воздействиям механического либо химического происхождения . Но при этом они в какой-то мере теряют пластичность, свойственную полимерам низкой плотности.

ВНИМАНИЕ! Полиэтиленовая труба низкой плотности, изготовленная из ПВД, не предназначена для транспортировки жидкостей, разогретых до очень высоких температур (выше 80 0C) и под большим давлением, хотя из этого материала и делают напорные трубы со стенками повышенной толщины.

Труба ПЭ, на производство которой идет «сшитый» полимер, имеет уникальную молекулярную структуру в виде сетки с особо прочными межмолекулярными связями. Этот материал начинает плавиться лишь при температурах, достигающих 200 0C. Именно поэтому он идет на изготовление элементов отопительных систем.

Производственный процесс

Трубы ПЭ изготавливают из готового гранулированного сырья методом экструзии:

Установка трубы

  1. Гранулы полиэтилена нагреваются до температуры их плавления и перемешиваются в однородную массу,
  2. Полиэтиленовая масса выдавливается через выходное отверстие экструдера нужного размера и формы,
  3. Еще горячая труба проходит калибровку для уточнения диаметра,
  4. В охлаждающих ваннах проходит нормализация температуры,
  5. Охлажденная труба нарезается на готовые изделия в виде прямых отрезков либо сматывается в бухты.

ВАЖНО! При изготовлении трубы ПЭ возможно армирование, для которого используются более сложные экструдеры, имеющие возможность настройки на эту операцию.

Виды полиэтиленовых труб

Полиэтиленовые трубы изготавливаются различных диаметров – в диапазоне от 16-ти до 1200 мм. Готовые изделия классифицируют по следующим параметрам:

  1. По конструкции самой трубы из полиэтилена:
    1. гладкая, имеющая обычные гладкие поверхности как внутри, так и снаружи,
    2. гофрированная, характеризуемая особой гибкостью и стойкостью к деформациям,
    3. двустенная, состоящая из двух слоёв – гладкого внутреннего и гофрированного наружного,
    4. армированная, усиленная нитью либо сетчатым каркасом для большей прочности,
    5. перфорированная, которая используется для водоотвода и может быть усилена геотекстилем для фильтрации жидкостей.
    1. разъёмные, которые крепятся между собой посредством фитингов или фланцев и могут разбираться в процессе эксплуатации,
    2. неразъёмные соединяются сварочным методом либо специальной несъемной муфтой.
    1. питьевые, материал которых не содержит никаких веществ, могущих повлиять на токсичность изделия,
    2. технические, которые могут изготавливаться из вторсырья.
    1. напорные, выдерживающие даже гидроудары,
    2. средненапорные, не предназначенные для увеличения напора жидкости,
    3. работающие под разрежением (или вакуумом), способные выдерживать не внутреннее, а внешнее давление.
    1. водопроводные,
    2. дренажные,
    3. газовые,
    4. канализационные,
    5. технические.

    Классификационные особенности пластиковой трубы обычно отражаются в её маркировке: здесь вы найдете диаметр, толщину стенок, марку полиэтиленового сырья и запись о назначении изделия.

    Свойства полиэтилена, применяемого для изготовления труб и фитингов

    Полиэтиленовые трубы, которые в современном строительстве зачастую заменяют привычные металлические, относятся к последним поколениям пластиковых изделий. Они быстро стали популярными и сегодня спектр их использования достаточно широк, это системы отопления и водоснабжения разных видов. Более того, специалисты утверждают, что они в самом деле являются наилучшей альтернативой трубным изделиям из любых других материалов, конечно – в том случае, если соблюдаются условия, приемлемые для их эксплуатации. Часто трубы из полиэтилена называют сокращенно ПНД (полиэтиленовые низкого давления) или ПВД (полиэтиленовые высокого давления), ПЭ.

    Содержание:

    Область использования полиэтиленовых труб

    1. Используются полиэтиленовые трубы для водоснабжения, т.е. из них сооружаются магистральные трубопроводы и системы для разводки воды в доме или на участке, надземные, или сооружаемые под землей.
    2. Благодаря высоким эксплуатационным характеристикам полиэтиленовые изделия могут применяться при сооружении газопроводов.
    3. Из ПНД-труб получаются надежные сточные системы, используемые для отвода грунтовых или подземных вод, бытовых стоков.
    4. Полиэтиленовые трубы используют при сооружении водоизоляции на теплотрассах.
    5. Они незаменимы в хозяйствах, где выращивание растений ведется на поливных землях, также при помощи труб организовывается постоянная подача к растениям диоксида углерода.

    Качества, которыми отличаются полиэтиленовые трубы

    Одно из важных преимуществ – способность служить на протяжении полувека в качестве водопроводных, не меняя при этом своих качественных характеристик. Отопительная система, при монтаже которой используются полиэтиленовые трубы гарантированно будет служить около четверти века.

    Привлекательными моментами для потребителей являются экологичность и чистота материала.

    Трубы можно использовать в жилых домах, при нагревании они не способны выделять вредные для людей вещества, налет или ржавчина внутри труб не появляются, следовательно получаемая вода намного чище той, которая подается по металлическим трубам. Гигиенисты подтверждают, что в воде, полученной из полиэтиленовых труб обнаруживается меньшее количество болезнетворных микроорганизмов.

    Трубы имеют гладкую, привлекательного вида поверхность, подвергать ее покраске в процессе эксплуатации нет смысла – она выглядит эстетично на протяжении долгих лет.

    Полиэтиленовые изделия отличаются не высокой теплопроводностью, т.е. конденсат на трубах с холодной водой не будет собираться даже в жаркую погоду.

    Труба полиэтиленовая цену имеет не высокую, отличается особой легкостью и простотой монтажа – при желании его можно выполнить своими руками.

    Из ПЭ-труб возможно выполнить монтаж систем водоснабжения холодного и горячего.

    Также они не реагируют на воздействие химических веществ.

    Полиэтиленовые трубя отличаются гибкостью и эластичностью, к тому-же они очень прочные и не склонны к деформации при физическом воздействии.

    Виды полиэтиленовых труб

    Трубы из полиэтилена могут иметь некоторые отличия в качественных характеристиках и во внешнем виде, зависимо от их предназначения.

    Трубы для газопроводов отличаются цветом, по всей длине поверхность трубы имеет полоски, такие-же, как и трубы, предназначенные для подачи питьевой воды. Качество газовых труб соответствует ГОСТу, их рабочее давление может составлять 3 – 12 атмосфер.

    Трубы технического назначения отличаются присутствием в материале, кроме полиэтилена, сырья вторичной переработки, ГОСТовского стандарта для них нет. Из-за невысокого качества материала труб может наблюдаться снижение качества сварных швов, выполняемых при их соединении, что может привести к ухудшению качества всей конструкции. Технические трубы рекомендуется использовать для сооружения систем подачи технической воды и прокладки связных и электрических кабелей.

    Труба полиэтиленовая канализационная изготавливается из качественного первичного сырья, ее рабочее давление – 5 – 20 атмосфер. Область использования – создание систем напорной канализации.

    Полиэтиленовые трубы для водоснабжения легко отличить по внешнему виду – на поверхность трубы нанесено продольные синие полосы. Параметры таких труб соответствуют ГОСТу, предназначены они для подачи питьевой или технической воды. Рабочее давление водных труб – от 5 до 15 атмосфер.

    Как различить полиэтиленовые трубы по маркировке

    Если в маркировке полиэтиленовой трубы имеются символы ПВД – значит она изготовлена из полиэтилена высокого давления, материала пластичного, химически малоактивного, имеющего низкую температуру наступления хрупкости. Такие трубы имеют малый вес, их перевозка и монтаж, или демонтаж, не вызывают особых проблем. Они устойчивы к воздействию агрессивных сред, легко выдерживают нагрузки на сжатие, растяжение, деформацию.

    Монтаж выполняется очень просто, качество его позволяет внутренним канализационным системам работать качественно на протяжении десятилетий. Рабочее давление в таких трубах может до 25 атмосфер. При замерзании содержащегося в трубе вещества разрыв трубы не произойдет. Рекомендуемая температура эксплуатации – до 40С, но в аварийной ситуации труба может выдержать температуру порядка 80С.

    Такие трубы отличаются химической инертностью, технология их производства практически исключает возможность добавки в полиэтиленовую массу каких-либо посторонних веществ, это позволяет применять трубы при сооружении водопроводов. Продукция ПВД может отличаться по толщине стенок и по диаметру, а также по конструкции, трубы могут быть:

    • двустенными,
    • гофрированными,
    • гладкими однослойными,
    • трехслойными, усиленными синтетическими нитями.

    Буквами ПНД обозначаются трубы низкого давления, производятся они путем полимеризации этилена при заданных температуре (150С) и давлении (20 атмосфер). Получаемый продукт обладает уникальными свойствами, может выдерживать давление порядка 3-5 МПа. Он отличается невысоким весом, но имеет строго определенный диапазон температур, при которых может производится его эксплуатация от 0С до +40С. Более высокие температуры вызывают потерю материалом кольцевой жесткости, более низкие – остекленение.

    Привлекательным моментом является низкий показатель теплового расширения, при воздействии максимально допустимых температур, порядка +70С, произойдет увеличение габаритов трубы всего на 3%.

    Специалисты утверждают, что рациональное использование таких труб – это:

    • прокладка холодных водопроводов с питьевой или технической водой, внутри сооружений или наружных, на глубине, превышающей глубину промерзания грунтов
    • для сооружения систем подачи газообразных, инертных к полиэтилену веществ, а также жидких, температура которых ниже +40С
    • в качестве коробов для электрокабелей.

    На возможность эксплуатации труб в тех или иных условиях оказывает влияние сорт полимера, обуславливающий переносимость внутреннего давления. Он также формирует характеристику ПНД-труб по стойкости стенок.

    Напорные трубы с аббревиатурой ПЭ, предназначены для систем водоснабжения. Исходным материалом для изготовления таких труб служит высококачественный полимер ПЭ80 или ПЭ100.

    Труба полиэтиленовая гофрированная изготавливается из полиэтиленового сырья с маркировкой ПЭ63 или ПЭ80, отличающегося устойчивостью к воздействию активных химических реагентов. Используется она при сооружении систем канализации. Главная ее особенность – наличие двух слоев: верхнего – волнообразного и внутреннего – исключительно гладкого. Гофрированный материал служит для придания изделию особой прочности, гладкий – позволяет исключить какие-либо помехи для прохождения жидкости и отходов, засоряются такие трубы крайне редко.

    РЕХ-трубы – отопительная система из полиэтиленового материала

    Особой прочностью и возможностью эксплуатации при высоких температурах отличаются уникальные полиэтиленовые изделия РЕХ, изготовление их выполняется путем сшивки полиэтилена, заключающегося в добавлении молекулярных связей в структуре самого материала.

    Трубы РЕХ характеризуются:

    • высоким уровнем плотности материала,
    • устойчивостью к высоким давлению и температуре, их эксплуатация возможна при использовании носителя температурой порядка +90С,
    • при нагревании такой трубе можно придать любую форму, после охлаждения материала она сохранится без изменений, для возвращения трубе прежней конфигурации потребуется выполнить повторный ее нагрев,
    • срок эксплуатации, на протяжении которого будут гарантированно сохраняться все заявленные качества труб – порядка 50 лет,
    • небольшой вес труб упрощает процесс транспортировки и монтажа, не создает лишнего давления на конструкции сооружения,
    • монтаж выполняется при помощи пресс-фитингов или же резьбовых соединений, что позволяет отказаться от использования какого-либо дополнительного оборудования.

    Положительный момент – отсутствие коррозийных процессов в материале, небольшие линейные расширения при воздействии максимально-допустимых температур позволяют выполнять монтаж отопительных систем внутри стен.

    Особенности монтажа полиэтиленовых труб

    Монтаж заключается в соединении фрагментов полиэтиленовых изделий при помощи сварки, с использованием всевозможного вида фитингов для полиэтиленовых труб.

    Установка их выполняется в тех местах системы, где требуется выполнить разветвление, поворот, изменение диаметра.

    Сварочные работы выполняются при помощи специального паяльника, заключаются в расплавлении внутренней части фитинга и поверхности трубы и быстром их соединении с последующем охлаждением.

    При использовании электрической сварки суть выполняемой работы остается та же, отличие заключается в наличии внутри фитинга устройства для оплавления детали.

    Если используется вариант соединения с компрессионным фитингом, то паяльный аппарат не потребуется – работа заключается в установке специального кольца, которое будет удерживать соединяемые фрагменты в определенном положении относительно друг друга и предупреждать возможность разрушения соединения.

Ссылка на основную публикацию