Как делается расчёт радиаторов отопления по площади + калькулятор
Тепло в жилье – основа комфорта, здоровья и обустроенности. Принимая во внимание, что греться приходится от 6 и более месяцев, правильно продуманный отопительный комплекс ещё и экономит финансы пользователей. Упрощает расчёт радиаторов отопления по площади калькулятор. Для того, чтобы выяснить, как произвести более правильный расчёт, мы обратились в компанию Миралекс – которая профилируется на системах отопления и водоснабжения.
В частных домовладениях отопление индивидуально, в многоэтажках – общее, но в любом варианте основу составляют радиаторы. Именно они отдают обогрев в помещение и от их свойств и количества зависит расход энергоносителей и температура. Произвести расчёт радиаторов отопления по площади калькулятор позволяет путём внесения в поля фактических показателей. Процедуру подсчёта осуществляют вручную в упрощённом и детальном форматах.
Виды радиаторов
Процесс нагрева воздуха и поддержания его достаточной температуры зависит от батарей – металла, размеров, подсоединения в комплекс и их размещения. Перед тем, как рассчитать количество секций радиатора, потребуется узнать металл изготовления.
Показатели различных металлов:
- А 350 алюминиевые – 138 Вт;
- А 500 из алюминия – 185 Вт;
- S 500 из алюминия – 205 Вт;
- L 350 из биметалла – 130 Вт;
- L 500 из биметалла – 180 Вт;
- Из чугуна – 160 Вт.
Батареи группируют от межосевой длины:
Стальные
Эта разновидность теплоносителей отличается сравнительно невысокой стоимостью и эстетичным видом. Конструкция целостная и не регулируется количество секций. Стальные стенки имеют небольшую толщину и требуют антикоррозионной защиты. При эксплуатации необходима защита от гидравлических ударов и механических повреждений, так как швы могут дать течь. Учитывая низкую теплоёмкость конструкции, установка её в квартирном помещении нецелесообразна. В частной постройке такой вариант более приемлем, так как имеется возможность самостоятельно регулировать степень нагрева теплоносителя.
Чугунные
Модели максимальной теплоотдачей. В отличие от советских радиаторов, современные представлены в достойных дизайнерских вариантах, сохранив при этом положительные свойства.
Этот вид батарей отличается практичностью и удобством:
- количество секций можно регулировать;
- гидроудары им не опасны;
- стенки секций мало подвержены коррозийным процессам;
- прибор пригоден для любого теплоносителя.
Батареи из чугуна отличаются большой массой и требуют качественного монтажа и надёжного крепления (имеются настенные и напольные варианты).
Кроме того, батареи греются длительное время.
Алюминиевые
При высокой теплоотдаче алюминиевые конструкции имеют небольшой вес. Внешний вид элегантен и разнообразен, что позволяет устанавливать их в любые помещения. Конструкции могут быть как цельными, так и сборными, из нескольких секций.
Поскольку алюминий подвержен кислородной коррозии, батарея требует соответствующей антикоррозионной защиты. При её наличии по эксплуатационным характеристикам этот вид радиаторов превосходит все остальные.
Приборы устанавливают в частном секторе из-за повышенного воздействия к гидроударам. При центральном отоплении этому невозможно противостоять.
Биметаллические
Соединены из двух слоёв. Внешний алюминиевый, обладает высокой теплоотдачей. Второй – из сплава, не разрушающегося от коррозии. Такая конструкция обеспечивает длительную эксплуатацию. Однако стоимость этих моделей достаточно высока, поэтому важно то, как рассчитать количество секций биметаллического радиатора на комнату. Они характеризуются более сильной теплопроводность чем чугунные.
Простой расчёт
Подключение обогрева в многоэтажки, количество и место размещения приборов производится на основании сложных технических вычислений. Их производят специалисты на основании СНиП 41-01-2003. Нормативные правила предусматривают, например, сколько секций биметаллического радиатора нужно на 1 м² площади:
- в центре -100 Вт;
- на севере– 150-200 ВТ;
- на юге – 60 Вт.
СНиП предусматривает сколько секций батарей нужно на квадратный метр площади строения, учитывая состав сплава:
- биметалл – 1,8 кв. м;
- алюминий – 2,0 кв. м;
- чугун – 1,5 кв. м.
Приблизительное вычисление пользователь может произвести самостоятельно. К приобретённому радиатору прилагается инструкция пользователя. В ней прописаны данные приборов, мощность. Используя эти показатели можно сделать расчёт секций радиаторов по площади помещения по шаблону:
площадь помещения (в кв. м) Х100 Вт / мощность секции (цифры в инструкции)
Полученные данные применяются с отапливаемыми сверху и снизу этажами , не на углу, в постройке из кирпича, при расстоянии до верха до 3-х м.
Расчёт по объёму
При высоте стен более 3-х метров применяют расчёт радиаторов отопления с размеров. На 1 кв. м жилья:
- для построек из панельных блоков – 41 Вт;
- для зданий из кирпичной кладки – 34 Вт.
Шаблон:
Теплоотдача = площадь комнаты Х высоту стен Х нормативную мощность (41 или 34).
Полученный итог делится на нормативную отдачу секции и получается требуемое их число.
Пример простого расчёта
В просчётах принимается усреднённый вариант в 1300 Вт. Его добавляют на 20% и приводят к большему значению. Таким образом, покупают прибор мощностью 1600 Вт. Если 1 секция – 160 Вт, то потребуется 10 штук.
Чтобы выяснить, сколько секций биметаллического радиатора нужно на 18 м² с высотой стен в 2,7 м подставляем цифры:
18 Х 100=1800 Вт.
Затем подбирается требуемый комплекс. Потребитель может купить прибор подходящего размера, по длине от 0,8 до 2,0 м и высоте 0,3-0,6 м.
Затем нужно определиться с металлом.
Видео описание
О расчёте количества секций батареи в видео:
Детальный расчёт
Осуществить расчёт количества секций радиаторов отопления можно с учётом дополнительных коэффициентов. Мощность принимается нормативная – на 1 кв. м 100 Вт. Во внимание берутся дополнительные показатели, влияющие на атмосферу в строении:
Теплоотдача = площадь Х 100 Х К1 Х К2 Х К3 Х К4 Х К5 Х К6 Х К7 Х К8 Х К9 Х К10
Каждый коэффициент влияет на тепловой режим помещения.
К1 – число стен, соприкасающихся с уличными температурами, где:
- при одной поверхности берётся 1;
- при двух поверхностях – 1,2;
- при трёх – 1,3;
- при четырёх стенах, соприкасающихся с атмосферой – 1,4.
При этом угловые помещения будут самыми холодными.
К2 – показатель, принимающий во внимание отношение к полюсам. Поверхности, находящиеся в тени, будут более холодными, так как на них не воздействует тепло солнечных лучей:
- северная поверхность -1,1;
- восточная сторона -1,1;
- южная поверхность -1;
- западная поверхность здания -1.
К3 – показатель, показывающий степень утепления. Кроме стандартного сооружения жильцы могут утеплять стены специальными изделиями как снаружи, так и изнутри, уменьшая теплопотери.
Термоизоляция снижает потребность в отоплении:
- кладка стен с толщиной двух кирпичей без дополнительного утепления – 1;
- кладка стен с толщиной одного кирпича без дополнительного утепления – 1,27;
- с дополнительным утепляющим материалом- 0,85.
К4 – показатель, обозначающий температурный режим местности. Температура в различных регионах сильно отличается. Для показателя применяют сведения из гидрометслужбы о самых низких температурах:
- от -10 °С показатель 0,7;
- от -15 °С показатель 0,9;
- от -20 °С показатель 1,1;
- от -25 °С показатель 1,3;
- ниже -35 °С – 1,5.
К5 – учитывает высоту стен в комнате. Для обогрева большего объёма потребуется больше мощности:
- при стандартном показателе в 2,7 м – 1;
- от 2,8 до 3 м – 1,05;
- от 3,1 до 3,5 м – 1,1;
- от 3,6 до 4,0 м – 1,15;
- больше 4-х м- 1,2.
К6 – учитывает температуру в помещениях выше и ниже просчитываемого. Для квартир в верхнем и первом этажах потребуется большая теплоотдача. При этом следует учитывать, что в многоэтажных домах запрещено монтировать систему тёплого пола. Его можно утеплить с помощью специальных материалов по желанию хозяев. Чердак делают тёплым в частных домовладениях.
Применяемый показатель:
- холодное не прогреваемое помещение сверху -1;
- утеплённая поверхность наверху – 0,9;
- обогреваемая комната сверху– 0,8.
К7 – показатель, принимающий во внимание утечку тепла через поверхность стекла.
Даже современные металлопластиковые окна пропускаю тепло и этот фактор нужно учитывать при просчёте отопления. Рамы из дерева имеют большие показатели теплопотерь:
- деревянный материал рам и два стекла – 1,27;
- рамы из металлопластика с удвоенными стёклами – 1;
- стеклопакет с двумя стёклами и аргоном в качестве заполнителя или двухкамерный – 0,85.
Имеет значение не только материал оконных рам, но и размер поверхности остекления.
К8 – показатель, где принимается во внимание отношение площади поверхности окон ко всему помещению:
- соотношение меньше 0,1 – показатель 0,8;
- соотношение от 0,11 до 0,2 – показатель 0,9;
- соотношение от 0,21 до 0,3– показатель 1,0;
- соотношение от 3,1 до 0,4 –1,1;
- соотношение от 4,1 до 0,45 –1,2.
К9 – принимает во внимание то, как врезаны блоки в общую схему. Тепловой прибор соединяется с системой, по которой тычет нагревающая жидкость. В трубы вставлены радиаторы, отдающие температуру в атмосферу. После остывания теплоноситель возвращается по трубам к котлу и нагревается, замыкая цикл по кругу.
Порядок соединения и вставки радиаторов в конструкцию обогрева прямо воздействует на температуру воздуха:
- диагональный: нагрев в нижней части, возврат в нижней части (1,0);
- диагональный: нагрев в верхней части, возврат в нижней части (1,25);
- односторонний: нагрев в верхней части, возврат в нижней части (1,03);
- односторонний: нагрев в нижней части, возврат в нижней части (1,28);
- двусторонний: нагрев-возврат в нижней части с двух сторон (1,13);
- двусторонний: нагрев-возврат в нижней части с одной стороны (1,28).
К10 – коэффициент, определяющий закрытость приборов. Обогрев принято ставить под остеклением. Это связано с тем, что пелена тёплого воздуха от отопительных приборов поднимается вверх и препятствует проникновению внутрь низкотемпературному воздуху от окна. Поэтому даже когда на стёклах наледь, внутри может быть тепло.
Разновидности установки:
- прибор закреплён на стене без прикрытия чем-либо –0,9;
- прибор закрывает подоконник или другой предмет –1,0;
- прибор закреплён в нишу–1,0;
- прибор закрывает подоконник и со стороны комнаты решётка –1,12;
- прибор спрятан за эстетичной решёткой –1,2.
Подставляют все показатели и перемножают. Перед тем как рассчитать количество секций радиатора отопления при приобретении в техдокументации изучают показатели от производителя. Общую цифру делят на мощность 1 прибора. Результатом будет искомая цифра.
Конструкции больше десятисекционных не применяют. Берут два прибора размером от 5 в одном.
Производители пишут в паспорте изделия максимальные показатели обогрева. Поэтому в расчётах подставляют минимально обозначенную цифру.
Калькулятор
Самостоятельные расчёты представляют определённую сложность для простого обывателя. Поэтому можно произвести расчёт секций радиаторов по площади помещения калькулятором на сайте. В него заносится информация:
- объёмы помещения;
- требуемый уровень тепла;
- наличие окон;
- внешние поверхности (стены, балконы).
Программа может запросить дополнительные данные. После их внесения все расчёты выполнятся автоматически.
Видео описание
Подробно рассчитать количество секций поможет видео:
Видео описание
Расчёт в зависимости от типа радиатора
При изучении составляющих частей комплексов обогрева в интернет магазине расчёт батарей отопления на площадь калькулятор производит в сети.
Данные приводятся в отношении каждой модели. Цифра приводится иногда не в Вт, а в качестве расхода теплоносителя. Пересчитать можно: 1 л/мин считают как 1 кВт мощности.
Однотрубная система
При использовании системы с однотрубным подключением имеются особенности. На установленный далее прибор доходит более холодный теплоноситель. Чтобы не считать температуру индивидуально, используют упрощённую процедуру.
Если у Вас в доме однострубная система, у бренда Gibax есть специальные модули подключения Радиплект Терм и Радиплект, которые, благодаря минимальному количеству соединений, сделают систему максимально надежной. Это модули с автоматическим или ручным режимами температуры. Также, эти модули помогут Вам в поддержании оптимальной температуры воздуха в помещении благодаря автоматическому или ручному управлению.
Сначала считают как для двухтрубной системы, а затем добавляют нужное число радиаторных секций. Процент снижения тепла на соединительных стыках определяет количество добавочных секций. Падение температуры нагрева шаблонно принимается 20% на более удалённом стыке.
Видео описание
Дополнительно смотрите, как подключить радиаторы к однотрубной системе:
Использование старых показателей
При производстве ремонтных работ и замене предыдущего отопительного оборудования, можно воспользоваться предыдущими данными. Если уровень температуры в отопительный сезон устраивал, то тепловая мощность остаётся прежней. Старые батареи со временем на 10-15% потеряют теплопроводность за счёт внутренней коррозии. Поэтому новые потребуют меньшее количество секций при аналогичном материале батареи.
При установке приборов в дизайнерских вариантах следует подходить к монтажу с особой внимательностью. Нетрадиционные решения существенно меняют систему прогрева воздуха.
Заключение
В итоге, перед совершением покупки, пользователь может самостоятельно просчитать предварительную потребность в приборах по упрощённой или детальной формуле или воспользоваться калькулятором в интернете.
Выставка домов «Малоэтажная страна» выражает искреннюю благодарность специалистам компании «Миралекс» за помощь в создании материала.
Компания «Миралекс» – поставщик систем водоснабжения и теплоснабжения на любых объектах, от ведущих мировых брендов. Так же компания занимается разработкой и монтажом систем автоматизированного учета потребления энергоресурсов.
Если Вам нужна более подробная консультация, то можете воспользоваться следующими контактами:
Расчёт количества секций радиатора отопления: рекомендации по подготовке данных для подсчета, формулы и калькулятор
На этапе подготовки к капитальным ремонтным работам и в процессе планирования возведения нового дома возникает необходимость расчета количества секций радиатора отопления. Результаты подобных вычислений позволяют узнать количество батарей, которого было бы достаточно для обеспечения квартиры либо дома достаточным теплом даже в наиболее холодную погоду.
Расчёт количества секций радиатора отопления
Порядок расчета может меняться в зависимости от множества факторов. Ознакомьтесь с инструкциями по быстрому расчету для типичных ситуаций, вычислению для нестандартных комнат, а также с порядком выполнения максимально подробных и точных расчетов с учетом всевозможных значимых характеристик помещения.
Расчёт количества секций радиатора отопления
Рекомендации по расчету до начала работы
Чтобы самостоятельно рассчитать нужное количество секций отопительной батареи, вы обязательно должны узнать следующие параметры:
- габариты комнаты, для которой выполняется расчет;
Показатели теплоотдачи, форма батареи и материал ее изготовления – эти показатели в расчетах не учитываем.
Важно! Не выполняйте расчет сразу для всего дома либо квартиры. Потратьте немного больше времени и проведите вычисления для каждой комнаты отдельно. Только так можно получить максимально достоверные сведения. При этом в процессе расчета количества секций батареи для обогрева угловой комнаты к итоговому результату нужно добавить 20%. Такой же запас нужно накинуть сверху, если в работе обогрева появляются перебои либо же его эффективности недостаточно для качественного прогрева.
Стандартный расчет радиаторов отопления
Расчет радиаторов отопления
Начнем обучение с рассмотрения наиболее часто использующегося метода расчета. Его вряд ли можно считать самым точным, зато по простоте выполнения он определенно вырывается вперед.
Стандартный расчет радиаторов отопления
В соответствии с этим «универсальным» методом для обогрева 1 м2 площади помещения нужно 100 Вт мощности батареи. В данном случае вычисления ограничиваются одной простой формулой:
K = S/ U*100
- K – необходимое количество секций батареи для обогрева рассматриваемого помещения;
- S – площадь этого помещения;
- U – мощность одной секции радиатора.
Для примера рассмотрим порядок расчета необходимого числа секций батареи для комнаты габаритами 4х3,5 м. Площадь такого помещения составляет 14 м2. Производитель заявляет, что каждая секция выпущенной им батареи выдает 160 Вт мощности.
Подставляем значения в приведенную выше формулу и получаем, что для обогрева нашей комнаты нужно 8,75 секций радиатора. Округляем, конечно же, в большую сторону, т.е. к 9. Если комната угловая, добавляем 20%-й запас, снова округляем, и получаем 11 секций. Если в работе отопительной системы наблюдаются проблемы, добавляем еще 20% к первоначально рассчитанному значению. Получится около 2. То есть в сумме для обогрева 14-метровой угловой комнаты в условиях нестабильной работы отопительной системы понадобится 13 секций батареи.
Расчет алюминиевых радиаторов отопления
Приблизительный расчет для стандартных помещений
Очень простой вариант расчета. Основывается он на том, что размер отопительных батарей серийного производства практически не отличается. Если высота комнаты составляет 250 см (стандартное значение для большинства жилых помещений), то одна секция радиатора сможет обогреть 1,8 м2 пространства.
Площадь комнаты составляет 14 м2. Для расчета достаточно разделить значение площади на упоминавшиеся ранее 1,8 м2. В результате получается 7,8. Округляем до 8.
Таким образом, чтобы прогреть 14-метровую комнату с 2,5-метровым потолком нужно купить батарею на 8 секций.
Важно! Не используйте этот метод при расчете маломощного агрегата (до 60 Вт). Погрешность будет слишком большой.
Подбор радиаторов отопления по тепловой мощности
Расчет для нестандартных комнат
Этот вариант расчета подходит для нестандартных комнат со слишком низкими либо же чересчур высокими потолками. В основу расчета положено утверждение, в соответствии с которым для прогрева 1 м3 жилого пространства нужно порядка 41 Вт мощности батареи. То есть вычисления выполняются по единственной формуле, имеющей такой вид:
A = Bx 41,
- А – нужное число секций отопительной батареи;
- B – объем комнаты. Рассчитывается как произведение длины помещения на его ширину и на высоту.
Для примера рассмотрим комнату длиной 4 м, шириной 3,5 м и высотой 3 м. Ее объем составит 42 м3.
Общую потребность этого помещения в тепловой энергии рассчитаем, умножив его объем на упоминавшиеся ранее 41 Вт. Результат – 1722 Вт. Для примера возьмем батарею, каждая секция которой выдает 160 Вт тепловой мощности. Нужное количество секций рассчитаем, разделив суммарную потребность в тепловой мощности на значение мощности каждой секции. Получится 10,8. Как обычно, округляем до ближайшего большего целого числа, т.е. до 11.
Важно! Если вы купили батареи, не разделенные на секции, разделите общую потребность в тепле на мощность целой батареи (указывается в сопутствующей технической документации). Так вы узнаете нужное количество отопительных радиаторов.
Расчетные данные рекомендуется округлять в сторону увеличения по той причине, что компании-произво дители нередко указывают в технической документации мощность, несколько превышающую реальное значение.
Расчет необходимого количества радиаторов для отопления
Максимально точный вариант расчета
Из приведенных выше расчетов мы увидели, что ни один из них не является идеально точным, т.к. даже для одинаковых помещений результаты пусть и немного, но все равно отличаются.
Если вам нужна максимальная точность вычислений, используйте следующий метод. Он учитывает множество коэффициентов, способных повлиять на эффективность обогрева и прочие значимые показатели.
В целом расчетная формула имеет следующий вид:
T =100 Вт/м 2 * A *B * C * D * E * F * G * S ,
- где Т – суммарное количество тепла, необходимое для обогрева рассматриваемой комнаты;
- S – площадь обогреваемой комнаты.
Остальные коэффициенты нуждаются в более подробном изучении. Так, коэффициент А учитывает особенности остекления помещения .
Особенности остекления помещения
- 1,27 для комнат, окна которых остеклены просто двумя стеклами;
- 1,0 – для помещений с окнами, оснащенными двойными стеклопакетами;
- 0,85 – если окна имеют тройной стеклопакет.
Коэффициент В учитывает особенности утепления стен помещения .
Особенности утепления стен помещения
- если утепление низкоэффективное , коэффициент принимается равным 1,27;
- при хорошем утеплении (к примеру, если стены выложены в 2 кирпича либо же целенаправленно утеплены качественным теплоизолятором) , используется коэффициент равный 1,0;
- при высоком уровне утепления – 0,85.
Коэффициент C указывает на соотношение суммарной площади оконных проемов и поверхности пола в комнате.
Соотношение суммарной площади оконных проемов и поверхности пола в комнате
Зависимость выглядит так:
- при соотношении равном 50% коэффициент С принимается как 1,2;
- если соотношение составляет 40%, используют коэффициент равный 1,1;
- при соотношении равном 30% значение коэффициента уменьшают до 1,0;
- в случае с еще меньшим процентным соотношением используют коэффициенты равные 0,9 (для 20%) и 0,8 (для 10%).
Коэффициент D указывает на среднюю температуру в наиболее холодный период года .
Распределение тепла в комнате при использовании радиаторов
Зависимость выглядит так:
- если температура составляет -35 и ниже, коэффициент принимается равным 1,5;
- при температуре до -25 градусов используется значение 1,3;
- если температура не опускается ниже -20 градусов, расчет ведется с коэффициентом равным 1,1;
- жителям регионов, в которых температура не опускается ниже -15, следует использовать коэффициент 0,9;
- если температура зимой не падает ниже -10, считайте с коэффициентом 0,7.
Коэффициент E указывает на количество внешних стен.
Количество внешних стен
Если внешняя стена одна, используйте коэффициент 1,1. При двух стенах увеличьте его до 1,2; при трех – до 1,3; если же внешних стен 4, используйте коэффициент равный 1,4.
Коэффициент F учитывает особенности вышерасположенно й комнаты . Зависимость такова:
- если выше находится не обогреваемое чердачное помещение, коэффициент принимается равным 1,0;
- если чердак отапливаемый – 0,9;
- если соседом сверху является отапливаемая жилая комната, коэффициент можно уменьшить до 0,8.
И последний коэффициент формулы – G – учитывает высоту помещения.
Высота комнаты
- в комнатах с потолками высотой 2,5 м расчет ведется с использованием коэффициента равного 1,0;
- если помещение имеет 3-метровый потолок, коэффициент увеличивают до 1,05;
- при высоте потолка в 3,5 м считайте с коэффициентом 1,1;
- комнаты с 4-метровым потолком рассчитываются с коэффициентом 1,15;
- при расчете количества секций батареи для обогрева помещения высотой 4,5 м увеличьте коэффициент до 1,2.
Этот расчет учитывает почти все существующие нюансы и позволяет определить необходимое число секций отопительного агрегата с наименьшей погрешностью. В завершение вам останется лишь разделить расчетный показатель на теплоотдачу одной секции батареи (уточните в прилагающемся паспорте) и, конечно же, округлить найденное число до ближайшего целого значения в сторону увеличения.
Цены на популярные модели радиаторов отопления
Калькулятор расчета радиатора отопления
Для удобства, все эти параметры внесены в специальный калькулятор расчета радиаторов отопления. Достаточно указать все запрашиваемые параметры — и нажатие на кнопку «РАССЧИТАТЬ» сразу даст искомый результат:
Советы по энергосбережению Советы по энергосбережению
Видео – Расчёт количества секций радиатора отопления
Как рассчитать мощность отопительных батарей для частного дома
Допустим, вы подобрали отопительные приборы по типу и дизайну. Следующий шаг – расчет радиаторов отопления для каждой комнаты частного дома, включающий определение тепловой мощности и количества секций (или размера панелей). Простейший вариант – воспользоваться онлайн-калькулятором любого строительного портала. Но результаты вычислений желательно перепроверить, иначе за ошибки придется расплачиваться позже. Предлагаем рассчитать теплоотдачу батарей отопления вручную, проверенным и удобным способом.
Исходные данные для вычислений
Расчет тепловой мощности батарей выполняется для каждого помещения отдельно, в зависимости от числа внешних стен, окон и наличия входной двери с улицы. Чтобы правильно рассчитать показатели теплоотдачи радиаторов отопления, ответьте на 3 вопроса:
- Сколько тепла необходимо на обогрев жилой комнаты.
- Какую температуру воздуха планируется поддерживать в конкретном помещении.
- Средняя температура воды в отопительной системе квартиры либо частного дома.
Примечание. Если в коттедже смонтирована однотрубная разводка, придется делать поправку на остывание теплоносителя — добавлять секции к последним радиаторам.
Ответ на первый вопрос — как рассчитать потребное количество тепловой энергии различными способами, дается в отдельном руководстве – расчет нагрузки на отопительную систему. Приведем 2 упрощенных методики вычислений: по площади и объему комнаты.
Распространенный способ — измерить обогреваемую площадь и выделить на квадратный метр 100 Вт теплоты, иначе — 1 кВт на 10 м². Мы предлагаем уточнить методику – учесть количество световых проемов и наружных стен:
- для комнат с 1 окном или входной дверью и одной внешней стенкой оставить 100 Вт тепла на метр квадратный;
- угловое помещение (2 наружных ограждения) с 1 оконным проемом – считать 120 Вт/м²;
- то же, 2 световых проема – 130 Вт/м².
Важное условие. Расчет дает более-менее правильные результаты при высоте потолков до 3 м, здание построено в средней полосе умеренного климата. Для северных регионов применяется повышающий коэффициент 1.5…2.0, южных – понижающий 0.7—0.8.
Распределение тепловых потерь по площади одноэтажного дома
При высоте перекрытия более 3 метров (например, коридор с лестницей в двухэтажном доме) расход тепла правильнее считать по кубатуре:
- комната с 1 окном (внешней дверью) и единственной наружной стеной – 35 Вт/м³;
- помещение окружено другими комнатами, не имеет окон, либо находится на солнечной стороне – 35 Вт/м³;
- угловая комната с 1 оконным проемом – 40 Вт/м³;
- то же, с двумя окнами – 45 Вт/м³.
На второй вопрос ответить проще: комфортная для проживания температура лежит в диапазоне 20…23 °C. Нагревать воздух сильнее неэкономично, слабее – холодно. Среднее значение для расчетов – плюс 22 градуса.
Оптимальный режим работы котла подразумевает нагрев теплоносителя до 60—70 °C. Исключение – теплые либо слишком холодные сутки, когда температуру воды приходится снижать или, наоборот, увеличивать. Количество таких дней невелико, поэтому средняя расчетная температура системы принимается равной +65 °C.
В комнатах с высокими потолками считаем расход теплоты по объему
Паспортная и реальная теплоотдача радиатора
Параметры любого отопительного прибора указываются в техническом паспорте. Обычно производители заявляют мощность 1 стандартной секции межосевым размером 500 мм в пределах 170…200 ватт. Характеристики алюминиевых и биметаллических радиаторов примерно одинаковы.
Фокус в том, что паспортный показатель теплоотдачи нельзя тупо использовать для подбора числа секций. Согласно п. 3.5 ГОСТ 31311-2005, фирма-изготовитель обязана указывать мощность батареи при следующих условиях эксплуатации:
- теплоноситель движется через радиатор сверху вниз (диагональное либо боковое подключение);
- температурный напор составляет 70 градусов;
- расход воды, протекающей через прибор, равен 360 кг/час.
Справка. Тепловой напор – разница между средней температурой сетевой воды и воздуха помещения. Обозначается ΔT, DT или dt, вычисляется по формуле:
Поясним суть проблемы, для этого подставим в формулу известные значения ΔT = 70 °C и температуры помещения – плюс 20 °C, произведем обратный расчет:
- tподачи + tобратки = (ΔT + tвоздуха) х 2 = (70 + 20) х 2 = 180 °C.
- Согласно нормативам, расчетная разница температур теплоносителя между подающей и обратной линией должна составлять 20 градусов. Значит, идущую от котла воду нужно нагреть до 100 °C, обратная остынет до 80 °C.
- Режим работы 100/80 °C недоступен бытовым отопительным установкам, максимальный нагрев составляет 80 градусов. Вдобавок поддерживать указанную температуру теплоносителя невыгодно экономически (вспомните, мы взяли средний показатель 65 °C).
Вывод. В реальных условиях батарея отдаст гораздо меньше теплоты, нежели прописано в инструкции по эксплуатации. Причина – меньшее значение ΔT – разницы температур воды и окружающего воздуха. По нашим исходным данным, показатель ΔT равен 130 / 2 — 22 = 43 градуса, почти вдвое ниже заявленной нормы.
Определяем число секций алюминиевой батареи
Пересчитать параметры отопительного прибора под конкретные условия непросто. Формула тепловой мощности и алгоритм вычислений, используемый инженерами–проектировщиками, слишком сложен для обычных домовладельцев, несведущих в теплотехнике.
Предлагаем выполнить расчет количества секций радиаторов отопления более доступным методом, дающим минимальную погрешность:
- Соберите исходные данные, перечисленные в первом разделе настоящей публикации, — узнайте необходимое для обогрева количество теплоты, температуру воздуха и теплоносителя.
- Рассчитайте реальный температурный напор DT, пользуясь приведенной выше формулой.
- При выборе определенного типа батарей откройте технический паспорт и отыщите показатель теплоотдачи 1 секции при DT = 70 градусов.
- Ниже представлена таблица готовых коэффициентов пересчета отопительной мощности радиаторных секций. Найдите показатель, соответствующий реальному DT, и умножьте его на величину паспортной теплоотдачи – получите мощность 1 ребра при ваших эксплуатационных условиях.
Зная настоящий тепловой поток, нетрудно выяснить число ребер батареи, требуемое для обогрева комнаты. Разделите нужное количество теплоты на отдачу 1 секции. Для ясности приведем пример расчета:
- Возьмем угловую комнату с двумя светопрозрачными конструкциями (окнами) площадью 15.75 м², высота потолков – 280 см (показана на фрагменте чертежа). Удельные затраты теплоты на обогрев – 130 Вт/м², общая потребность составит 130 х 15.75 = 2048 Вт.
- Величину теплового напора мы выяснили в предыдущем разделе, DT = 43 °C.
- Подбираем низенькие алюминиевые радиаторы GLOBAL VOX 350 (межосевое расстояние – 350 мм). Согласно документации изделия, теплоотдача 1 ребра составляет 145 Вт (DT = 70 °C).
- Находим в таблице коэффициент, соответствующий DT = 43 °C, K = 0.53.
- Умножаем паспортную мощность на коэффициент и находим реальную отдачу 1 секции: 0.53 х 145 = 76.85 Вт.
- Рассчитываем количество алюминиевых ребер на помещение: 2048 / 76.85 ≈ 26.65, округляем в бо́льшую сторону и получаем 27 штук.
Остается распределить секции по комнате. Если размеры окон одинаковы, делим 28 пополам и размещаем под каждым проемом радиатор на 14 ребер. В противном случае число секций батареи подбирается пропорционально ширине окон (можно приблизительно). Аналогичным образом пересчитывается теплоотдача биметаллических и чугунных радиаторов.
Схема расстановки батарей — приборы лучше размещать под окнами либо возле холодной наружной стены
Совет. Если вы владеете персональным компьютером, проще использовать расчетную программу итальянского бренда GLOBAL, размещенную на официальном ресурсе производителя.
Многие известные фирмы, в том числе GLOBAL, прописывают в документации теплоотдачу своих приборов для разных температурных условий (DT = 60 °C, DT = 50 °C), пример показан в таблице. Если ваш реальный ΔT = 50 градусов, смело пользуйтесь указанными характеристиками безо всякого перерасчета.
Расчет размера стального радиатора
Конструкция панельных приборов отличается от секционных. Батареи делаются из штампованных стальных листов толщиной 1…1.2 мм, заранее обрезанных в нужный размер. Чтобы подобрать радиатор требуемой мощности, нужно выяснить теплоотдачу 1 метра длины сваренной из листов панели.
Предлагаем воспользоваться простейшей методикой, основанной на технических данных серьезного немецкого производителя панельных водяных радиаторов Kermi. В чем суть: штампованные батареи унифицированы, типы изделий отличаются между собой количеством греющих панелей и теплообменных оребрений. Классификация радиаторов выглядит так:
- тип 10 – однопанельный прибор без дополнительных ребер;
- тип 11 – 1 панель + 1 лист гофрированного металла;
- тип 12 – две панели плюс 1 лист оребрения;
- тип 20 – батарея на 2 греющих пластины, конвекционное оребрение не предусмотрено;
- тип 22 – двухпанельный радиатор с 2 листами, увеличивающими площадь теплообмена.
Примечание. Также существуют обогреватели типа 33 (3 панели + 3 ребра), но подобные изделия менее востребованы ввиду повышенной толщины и цены. Самая «ходовая» модель – тип 22.
Итак, панельные штампованные приборы любого бренда отличаются только монтажными габаритами. Расчет радиаторов отопления сводится к выбору подходящего типа, затем по высоте и теплоотдаче вычисляется длина батареи для конкретного помещения. Алгоритм следующий:
- Определите исходные данные, перечисленные в начале статьи.
- Выберите тип и высоту отопительного прибора. Самый распространенные варианты – изделия высотой 30, 40 и 50 см, тип 22.
- Воспользуйтесь представленной таблицей, где указана теплоотдача q (Вт/1 м. п.) радиаторов Kermi разных типов и размеров в зависимости от условий эксплуатации. Начните с левого столбца – отыщите соответствующую температуру комнаты, потом – теплоносителя, дальше высоту и тип батареи. В ячейке на пересечении строки и столбца найдете мощность 1 метра радиатора.
- Количество энергии, нужной для обогрева, разделите на величину q – узнаете метраж радиатора заданной высоты.
- По каталогу подберите прибор водяного отопления соответствующей длины. При необходимости (например, батарея вышла чересчур длинной) разбейте этот размер на 2—3 прибора.
Пример расчета. Определим габариты стального радиатора для той же комнаты 15.75 м²: теплопотери — 2048 Вт, температура воздуха – 22 градуса, теплоносителя – 65 °C. Возьмем стандартные батареи высотой 500 мм, тип 22. По таблице находим q = 1461 Вт, выясняем общую длину панели 2048 / 1461 = 1.4 м. Из каталога любого производителя выбираем ближайший больший вариант – обогреватель длиной 1.5 м либо 2 прибора по 0.7 м.
Окончание первой таблицы — теплопередача 1 м длины радиаторов «Керми»
Совет. Наша инструкция на 100% верна для изделий компании Kermi. При покупке радиаторов другого бренда (особенно, китайского) длину панели стоит принимать с запасом 10—15%.
Отопительные приборы однотрубных систем
Важная особенность горизонтальной «ленинградки» — постепенное снижение температуры в основной магистрали из-за подмеса охлажденного батареями теплоносителя. Если 1 кольцевая линия обслуживает более 5 приборов, разница в начале и конце раздающей трубы может достигать 15 °C. Результат – последние радиаторы выделяют меньше теплоты.
Однотрубная схема закрытого типа — все обогреватели подключены к 1 трубе
Чтобы дальние батареи передавали помещению нужное количество энергии, при расчете отопительной мощности сделайте следующие поправки:
- Первые 4 радиатора подбирайте согласно вышеприведенным инструкциям.
- Мощность 5-го прибора увеличьте на 10%.
- К расчетной теплоотдаче каждой последующей батареи прибавляйте еще 10 процентов.
Пояснение. Мощность 6-го радиатора повышается на 20%, седьмого – на 30 и так далее. Зачем наращивать последние батареи однотрубной «ленинградки», подробно расскажет эксперт на видео:
Напоследок несколько уточнений
Приборы отопления могут работать в различных условиях, подключаться по разным схемам. Эти факторы оказывают влияние на теплоотдачу обогревателей в режиме эксплуатации. Определяя мощность комнатных радиаторов, учтите несколько рекомендаций:
- Если батарея подключается к трубопроводам по разносторонней нижней схеме, эффективность обогрева ухудшается. Добавьте к расчетному показателю мощности приборов 10%.
- В комбинированных системах (радиаторная сеть + теплые водяные полы) конвекционные приборы играют вспомогательную роль. Основную отопительную нагрузку несут напольные контуры. Но расчетную теплоотдачу радиаторов занижать не следует, при нужде батареи должны полностью заменить теплые полы.
- Домовладельцы нередко закрывают обогреватели декоративными экранами, даже зашивают гипсокартоном, оставляя конвекционные щели. В данном случае полностью теряется инфракрасное тепло, выделяемое нагретой поверхностью прибора. Соответственно, мощность батареи придется увеличить минимум на 40%.
- Не устанавливайте 1—3 радиаторных секции, даже если по расчету вышло такое количество. Чтобы получить нормальный обогревательный прибор, нужно смонтировать минимум 4 ребра.
- Незамерзающие жидкости уступают обычной воде по теплоемкости, разница составляет примерно 15%. При использовании антифризов наращивайте теплообменную площадь батарей на 10% (увеличивайте количество секций радиаторов либо размеры панелей).
При расчете радиаторов отопления учитывайте простое правило: чем ниже температура воды в подающей линии, тем большая площадь теплообменной поверхности нужна для обогрева комнат. Правильно подбирайте котельное оборудование и монтируйте системы, чтобы не приходилось решать проблемы путем наращивания батарейных секций.
Как рассчитать радиаторы отопления для частного дома
Комфортные условия жизни в зимнее время всецело зависят от достаточности снабжения теплом жилых помещений. Если это новостройка, например, на дачном или приусадебном участке, то необходимо знать, как рассчитать радиаторы отопления для частного дома.
Как рассчитать радиаторы отопления для частного дома
Все операции сводятся к вычислению количества секций радиаторов и подчиняются четкому алгоритму, поэтому нет нужды быть квалифицированным специалистом – каждый человек сможет проделать довольно точное теплотехническое вычисление своего жилища.
Почему необходим точный расчет
Теплоотдача приборов теплоснабжения зависит от материала изготовления и площади отдельных секций. От правильных вычислений зависит не только тепло в доме, но также сбалансированность и экономичность системы в целом: недостаточное число установленных секций радиаторов не обеспечит должное тепло в комнате, а излишнее количество секций ударит по карману.
Виды радиаторов отопления
Для вычислений необходимо определиться с типом батарей и системы теплоснабжения. К примеру, расчет алюминиевых радиаторов теплоснабжения для частного дома отличается от других элементов системы. Радиаторы бывают чугунными, стальными, алюминиевыми, алюминиевыми анодированными и биметаллическими:
- Наиболее известны чугунные батареи, так называемые «гармошки». Они долговечны, стойки к коррозии, обладают мощностью секций 160 Вт при высоте 50 см и температуре воды 70 градусов. Существенный недостаток этих приборов – неприглядный внешний вид, но современные производители выпускают гладкие и достаточно эстетичные чугунные батареи, сохраняя все преимущества материала и делая их конкурентоспособными.
Чугунные батареи отопления
- Алюминиевые радиаторы по тепловой мощности превосходят чугунные изделия, они прочны, обладают легким собственным весом, что дает преимущество при монтаже. Единственный недостаток подверженность к кислородной коррозии. Для его устранения взято на вооружение производство анодированных радиаторов из алюминия.
Алюминиевые радиаторы отопления
- Стальные приборы не обладают достаточной тепловой мощностью, не подлежат разборке и увеличению секций при необходимости, подвержены коррозии, поэтому не пользуются популярностью.
- Биметаллические радиаторы отопления – это сочетание стальных и алюминиевых деталей. Теплоносителями и крепежными деталями в них являются стальные трубы и резьбовые соединения, покрытые алюминиевым кожухом. Недостаток – довольно высокая стоимость.
По типу системы теплоснабжения различают однотрубное и двухтрубное подключение элементов отопления. В многоэтажных жилых домах в основном применена однотрубная схема системы теплоснабжения. Недостатком здесь является довольно значительная разница температуры входящей и исходящей воды на разных концах системы, что свидетельствует о неравномерности распределения тепловой энергии по приборам батареям.
Однотрубная и двухтрубная система отопления
Для равномерного распределения тепловой энергии в частных домах можно применять двухтрубную систему теплоснабжения, когда горячая вода подается по одной трубе, а охлажденная выводится по другой.
Кроме этого, точное вычисление количества батарей отопления в частном доме зависит от схемы подключения приборов, высоты потолка, площади оконных проемов, количества наружных стен, типа помещения, закрытости приборов декоративными панелями и от других факторов.
Помните! Необходимо правильно рассчитать требуемое число радиаторов отопления в частном доме, чтобы гарантировать достаточное количество тепла в помещении и обеспечить экономию финансовых средств.
Таблица для расчета количества секций батареи
Виды расчетов отопления для частного дома
Вид расчета радиаторов отопления для частного дома зависит от поставленной цели, то есть насколько точно вы хотите рассчитать батареи отопления для частного дома. Различают упрощенный и точный методы, а также по площади и по объему рассчитываемого пространства.
По упрощенному или предварительному методу подсчеты сводятся к умножению площади помещения на 100 Вт: стандартную величину достаточной тепловой энергии на метр в квадрате, при этом формула подсчета примет следующий вид:
Q – потребная мощность тепла;
S – расчетная площадь комнаты;
Вычисление нужного числа секций разборных радиаторов ведется по формуле:
N – требуемое количество секций;
Qx – удельная мощность секции по паспорту изделия.
Так как эти формулы для высоты комнаты – 2,7 м, для других величин требуется вводить коэффициенты поправки. Вычисления сводятся к определению количества тепла на 1 м3 объема помещения. Упрощенная формула выглядит так:
H – высота комнаты от пола до потолка;
Qy – средний показатель тепловой мощности в зависимости от вида ограждения, для кирпичных стен равен 34 Вт/м3, для панельных стен – 41 Вт/м3.
Эти формулы не могут гарантировать комфортные условия. Поэтому требуются точные вычисления, учитывающие все сопутствующие особенности здания.
Точный расчет приборов отопления
Наиболее точная формула необходимой тепловой мощности выглядит следующим образом:
Q = S*100*(K1*К2*…*Kn-1*Kn), где
K1, K2 … Kn – коэффициенты, зависящие от различных условий.
Какие условия влияют на микроклимат в помещении? Для точного расчета учитывается до 10 показателей.
K1 – показатель, зависящий от числа наружных стен, чем больше поверхности соприкасается с внешней средой, тем больше потери тепловой энергии:
- при одной наружной стене показатель равен единице;
- если две наружные стены — 1,2;
- если три внешние стены — 1,3;
- если все четыре стены наружные (т.е. здание однокомнатное) — 1,4.
К2 – учитывает ориентацию здания: считается, что комнаты хорошо прогреваются, если расположены в южном и западном направлении, здесь К2 = 1,0, и наоборот недостаточно – когда окна выходят на север или восток – К2 = 1,1. С этим можно поспорить: в восточном направлении помещение все же прогревается по утрам, поэтому целесообразнее применить коэффициент 1,05.
Расчитываем, насколько сильно должна греть батарея
К3 – показатель утепления наружных стен, зависит от материала и степени термоизоляции:
- для наружных стен в два кирпича, а также при использовании утеплителя для не утепленных стен показатель равен единице;
- для неутепленных стен – К3 = 1,27;
- при утеплении жилища на основании теплотехнических расчетов по СНиП – К3 = 0,85.
К4 – коэффициент, учитывающий самые низкие температуры холодного периода года для конкретного региона:
- до 35 °С К4 = 1,5;
- от 25 °С до 35 °С К4 = 1,3;
- до 20 °С К4 = 1,1;
- до 15 °С К4 = 0,9;
- до 10 °С К4 = 0,7.
Расчет радиаторов отопления по площади
К5 – зависит от высоты помещения от пола до потолка. В качестве стандартной высоты принята h = 2,7 м с показателем равной единице. Если высота комнаты отличается от стандартной, вводится поправочный коэффициент:
- 2,8-3,0 м – К5 = 1,05;
- 3,1-3,5 м – К5 = 1,1;
- 3,6-4,0 м – К5 = 1,15;
- более 4 м – К5 = 1,2.
К6 – показатель, учитывающий характер помещения, находящегося сверху. Полы жилых зданий всегда утепляются, комнаты сверху могут быть отапливаемыми или холодными, а это неизбежно повлияет на микроклимат рассчитываемого пространства:
- для холодного чердака, а также если помещение сверху не отапливается, показатель будет равен единице;
- при утепленном чердаке или кровле – К6 = 0,9;
- если сверху расположено отапливаемая комната – К6 = 0,8.
К7 – показатель, учитывающий тип оконных блоков. Конструкция окна существенным образом влияет на потери тепла. При этом величина коэффициента К7 определяется следующим образом:
- так как окна из дерева с двойным остеклением недостаточно защищают комнату, показатель самый высокий К7 = 1,27;
- стеклопакеты обладают отличными свойствами защиты от теплопотерь, при однокамерном стеклопакете из двух стекол К7 равен единице;
- улучшенный однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет, состоящий из трех стекол К7 = 0,85.
Однотрубная и двухтрубная система отопления
К8 – коэффициент, зависящий от площади остекления оконных проемов. Теплопотери зависят от количества и площади установленных окон. Соотношение площади окон к площади комнаты должно быть урегулировано таким образом, чтобы коэффициент имел низшие значения. В зависимости от отношения площади окон к площади помещения определяется искомый показатель:
- менее 0,1 – К8 = 0,8;
- от 0,11 до 0,2 – К8 = 0,9;
- от 0,21 до 0,3 – К8 = 1,0;
- от 0,31 до 0,4 – К8 = 1,1;
- от 0,41 до 0,5 – К8 = 1,2.
Схемы подключения отопительных приборов
К9 – учитывает схему подключения приборов. В зависимости от способа подключения горячей и вывода холодной воды зависит отдача тепла. Этот фактор необходимо учитывать при установке и определении требуемой площади приборов теплоснабжения. С учетом схемы подключения:
- при диагональном расположении труб подача горячей воды осуществляется сверху, обратка – снизу с другой стороны батареи, а показатель равен единице;
- при подключении подачи и обратки с одной стороны и сверху, и снизу одной секции К9 = 1,03;
- примыкание труб с двух сторон подразумевает и подачу, и обратку снизу, при этом коэффициент К9 = 1,13;
- вариант диагонального подключения, когда подача производится снизу, обратка сверху К9 = 1,25;
- вариант одностороннего подключения с подачей снизу, обраткой сверху и одностороннее нижнее подключение К9 = 1,28.
Потеря теплоотдачи из-за установки экрана радиатора
К10 – коэффициент, зависящий от степени закрытости приборов декорирующими панелями. Открытость приборов для свободного обмена теплом с пространством помещения имеет немаловажное значение, так как создание искусственных барьеров снижает теплоотдачу батарей.
Имеющиеся или искусственно созданные преграды могут изрядно понизить отдачу батареи из-за ухудшения обмена теплом с комнатой. В зависимости от этих условий коэффициент равен:
- при открытом расположении радиатора на стене со всех сторон 0,9;
- если прибор прикрыт сверху единице;
- когда радиаторы прикрыты сверху ниши стены1,07;
- если прибор прикрыт подоконником и декоративным элементом 1,12;
- когда радиаторы полностью прикрыты декоративным кожухом 1,2.
Правила установки радиаторов отопления.
Кроме этого, существуют специальные нормы расположения приборов отопления, которые необходимо соблюдать. То есть батарею располагать не менее, чем на:
- 10 см от низа подоконника;
- 12 см от пола;
- 2 см от поверхности наружной стены.
Подставляя все необходимые показатели, можно получить достаточно точное значение требуемой тепловой мощности помещения. Путем разделения полученных результатов на паспортные данные отдачи тепла одной секции выбранного прибора и, округлив до целого числа, получаем количество требуемых секций. Теперь можно, не опасаясь последствий, подобрать и установить необходимое оборудование с нужной тепловой отдачей.
Установка батареи отопления в доме
Способы упрощения расчетов
Несмотря на кажущуюся простоту формулы, на самом деле практический расчет не так прост, особенно если количество рассчитываемых комнат велико. Упростить расчеты поможет применение специальных калькуляторов, размещаемых на сайтах некоторых производителей. Достаточно ввести все необходимые данные в соответствующие поля, после чего можно получить точный результат. Можно воспользоваться и табличным методом, так как алгоритм вычисления достаточно прост и однообразен.
Популярные статьи
Геолокация по номеру телефона — как определить бесплатно. Как узнать местоположение мобильного по номеру
Расчет количества секций радиаторов отопления по площади помещения и объему: точный и упрощенный варианты подсчетов
Любой хозяин понимает, как важно произвести точный расчёт количества секций радиаторов отопления: если секций мало, прибор будет плохо отапливать квартиру; если же много, отопление будет неэффективным, и лишние джоули нужно будет выпускать в форточку.
Существует несколько вариантов расчётов батарей отопления частного дома. Если вы живёте в хорошо утеплённой стандартной квартире – воспользуйтесь быстрыми расчётами. Итак, как как рассчитать количество радиаторов?
Расчет батарей отопления на площадь
Расчет радиаторов отопления по площади помещения — это не самый точный вариант, но подходит, если квартира с высотой потолков 2,6 – 2,7 м.
- Узнаём общую площадь отапливаемого пространства (данные берутся в документации). Например, это 50 м 2 .
- Умножаем это число на 100 (Вт). Пример: 50 х 100 = 5000 Вт. (Или 5 кВт) – это общее количество тепла необходимое для данной квартиры.
- Смотрим в документах к радиатору, сколько тепла может выделить одна секция (см. ниже Таблицу 1). Например, биметаллический L 500 = 180 Вт.
- Теперь общее тепло делим на тепло из одной секции. 5000 Вт : 180 Вт = 27,77. Округляем до 28. Результат: для обогрева квартиры 50 м 2 нужно 28 секции радиаторов.
Секции радиаторов отопления
Нужно будет произвести такие же расчёты батареи отопления для каждой комнаты отдельно.
Если батареи планируется монтировать в нише или скрыть за экраном, то нужно добавить 15%. Например, мы получили для спальни в 14 м 2 , радиатор в 8 секций. Но т.к. батареи будут «прятаться», поэтому 8 + 1,2 (15% от 8) = 9,2 т.е. 9 секций.
Для кухни округлять число радиаторов можно в меньшую сторону. А для угловой комнаты и комнаты с балконной дверью – в большую.
Расчет по объему
Если высота потолков в квартире нестандартная, это нужно учитывать при расчётах и вычислять не площадь, а объём.
- Считаем объём комнаты. Для этого умножаем площадь на высоту потолков. Пример: комната 12 м 2 . Потолки – 3,1 м. 12 х3,1 = 37,2 м 3 .
- Расчет тепловой энергии на отопление. Узнаём из СНИП, сколько тепловой мощности нужно на обогрев 1 м 3 в нашем доме (см. ниже таблицу 2). Например, у нас кирпичный дом, значит показатель =34 Вт.
- Перемножаем два получившихся значения. Пример: 37,2 х 34 = 1264,8
- Смотрим в документах к радиатору, какова теплоотдача 1 секции. Например, для алюминиевого радиатора А350, это 138 Вт.
- Делим итог из пункта 3 на теплоотдачу. Пример: 1264,8 : 138 = 9 секций.
Примерный метод
Упрощенный вариант расчётов основан на принятие за стандарт нескольких показателей:
В помещении с обычными потолками 1 секция батареи обогреет 1,8 м 2 . Например, если комната 14 м 2 . 14 : 1,8 = 7,7. Округляем = 8 секций.
В комнате с 1 окном и 1 внешней стеной, 1 кВт мощности радиатора может обогреть 10 м 2 . Пример: комната 14 м 2 . 14 : 10 = 1,4. То есть для такой комнаты нужен обогреватель мощностью 1,4 кВт.
Такие методы можно использовать для примерных расчётов, но они чреваты серьёзными погрешностями.
Если результатами вычислений стал длинный радиатор более 10 секций, то имеет смысл разделить его на два отдельных радиатора.
Причины возможных ошибок
Производители стараются указывать в документах к батареям максимальные показатели теплоотдачи. Они возможны только если температура воды в отоплении будет на уровне 90 0 С (в паспорте тепловой напор указан 60 0 С).
В реальности такие значения достигаются теплосетями далеко не всегда. Это значит, что мощность секции будет ниже, а секций нужно больше. Теплоотдача одной секции может быть 50-60 против заявленных 180 Вт!
Боковое подключение радиаторов отопления
Если в сопроводительном документе к радиатору указано минимальное значение теплоотдачи, опираться в расчётах теплоотдачи радиатора батарей отопления лучше на этот показатель.
Ещё одно обстоятельство, которое влияет на мощность радиатора – схема его подключения. Если, например, длинный радиатор из 12 секций подключить боковым методом, дальние секции всегда будут намного холоднее, чем первые. А значит, и расчёты мощности были напрасными!
Самый точный расчёт
Чтобы наиболее точно рассчитать количество секций нужно принимать во внимание больше условий, чем объём и теплоотдача.
100 Вт х S(площадь помещения) х А х Б х В х Г х Д х Е х Ж
Буквы в этой формуле означают:
А – вид остекления. Если у вас:
- обычные стёкла = 1,26;
- двойной стеклопакет = 1;
- тройной стеклопакет = 0,85.
Б – теплоизоляция стен.
- современная, качественная = 0,85;
- в два кирпича или утепление = 1;
- некачественная изоляция = 1,26.
В – сколько занимают площади окна по сравнению с площадью пола.
- 10% = 0,8;
- 20% = 0,9;
- 30% = 1;
- 40% = 1,1;
- 50% = 1,2.
Г – минимальная tна улице.
- -10 0 С = 0,7;
- -20 0 С = 1,1;
- -30 0 С = 1,4;
- -40 0С = 1,7.
Д – количество наружных стен.
- 1 = 1,1;
- 2 (угол) = 1,2;
- 3 = 1,3;.
- 4 = 1,4
- другая квартира = 0,8;
- тёплое чердачное помещение = 0,9;
- холодный чердак = 1.
Ж — Высота потолков.
- до 2,9 = 1;
- 3-3,5 = 1,1;
- 3,6 – 4,5 = 1,2.
Рассмотрим пример. Комната 14 м 2 в стареньком доме. Радиаторы будут алюминиевые с теплоотдачей 205. По обычным формулам (для идеальных условий) получается, что нужно 7 радиаторов.
Теперь попробуем учесть все факторы.
- В окнах обычное остекление (А=1,26).
- Теплоизоляция оставляет желать лучшего (Б=1,26).
- Окна занимают 29% площади пола (В = 1).
- На улице бывает до 35 0 С (Г = 1,5).
- Наружная стена одна (Д = 1,1).
- Предпоследний этаж. Сверху другая квартира (Е = 0,8).
- Потолки 3,2м (Ж = 1,1).
Подставляем данные в формулу:
100 х 14 (м 2 ) х 1,26 х 1,26 х 1 х 1,5 х 1,1 х 0,8 х 1,1 = 3227
Теперь если разделить 3227 на теплоотдачу 205 Вт, получим 16 (!) секций радиаторов!
Но и это ещё не всё! Указанная теплоотдача будет действительно такой при 70 0 С в трубах. Но если t меньше, нужно вносить поправки и в эти данные.
Если t теплоносителя ниже стандартной (70 0 С), на каждые 10 градусов нужно добавить +15%.
В нашем примере t в трубах около 60 0 С. Значит к полученным 17 секциям нужно прибавить 2,4 (округляем до 2) секции. Итог – 19 секций. Большая разница с примерными расчётами!
При выборе системы отопления владельцы домов часто отталкиваются от критериев эффективности с экономичностью. Однотрубная система отопления частного дома — простой и удачный вариант для загородного жилища. Узнайте подробнее о достоинствах и недостатках этой системы.
Возможно, вам будет интересно узнать об организации водяного отопления в частом доме. Монтаж по шагам вы найдете здесь.
Пройдя по этой ссылке https://microklimat.pro/otopitelnoe-oborudovanie/obogrevateli/dlya-doma-energosberegayushhie.html вы узнаете, какие обогреватели для дома являются энергосберегающими и на чем строится экономия энергии.
Полезная информация
Показатели теплоотдачи для 1 секции некоторых видов радиаторов (Вт):
- Алюминиевый А 350 – 138.
- Алюминиевый А 500 – 185.
- Алюминиевый S500 – 205.
- Биметаллический L350 – 130.
- Биметаллический L500 – 180.
- Чугунные – 160.
Рекомендации СНИП по тепловой мощности для:
- Для кирпичного дома – 34 Вт
- Для панельного дома – 41 Вт.
- Новостройка, сделанная по всем стандартам. – 20 Вт.
Итак. Приблизительные расчёты подходят для новых добротных домов с пластиковыми окнами. Если же квартира угловая и/или с большими стеклянными окнами, на последнем этаже, с высокими потолками – это всё поводы пересчитать более основательно. Разница может быть немалой!
Для тех, кто далёк от математики, существуют онлайн–калькуляторы. Необходимо знать запрашиваемые показатели, ввести их и ответ будет тут же готов. Калькуляторы можно найти на сайтах изготовителей радиаторов.
Водяное отопление — самый распространенный варианта обогрева помещения. Для максимальной эффективности важно правильно подобрать радиаторы. Батареи отопления — какие лучше? Обзор основных характеристик: температура, давление, теплоотдача, материал.
О вреде инфракрасного обогревателя читайте в этом материале.
Видео на тему
Расчет количества радиаторов отопления: советы и методы
Чтобы зимой в частном доме или коттедже было тепло, нужно не только правильно выбрать мощность котла, но и грамотно рассчитать необходимое количество радиаторов отопления. Важно это и для квартиры в многоэтажке, если вы решили заменить старые батареи на новые. Если не уделить расчёту должного внимания, то даже при очень производительном котле в комнатах будет некомфортно. Мало радиаторов – холодно, много – жарко и неэкономично. Поэтому нужно выбирать батареи не наобум, а основываясь на точных расчётах и принимая во внимание технические параметры разных типов радиаторов. И здесь можно пойти двумя путями: воспользоваться стандартными усреднёнными формулами или же рассчитать более кропотливо с учётом индивидуальных особенностей дома. Чтобы вам было проще определиться с планом действий, мы рассмотрим оба варианта.
Основные данные для расчёта радиаторов отопления
Прежде всего, нужно определить базовые параметры, на которых будет основываться расчёт. Сюда относятся:
предпочитаемый тип и материал радиатора;
тепловая мощность – всей батареи для монолитных изделий либо отдельных секций для сборных вариантов;
допустимое число секций – в каждом случае оно ограничивается конструктивными особенностями батареи.
Учитывайте, что в зависимости от материала изготовления рабочие характеристики радиаторов будут существенно меняться. Поэтому расчёт следует делать изначально под конкретный металл и тип конструкции. Чтобы вам было проще ориентироваться в этих тонкостях, мы собрали усреднённые рабочие показатели разных видов батарей в наглядную таблицу.
Тип радиатора | Тепловая мощность 1 секции, Вт | Рабочее давление теплоносителя, атм | Допустимая температура теплоносителя, град. | Коэффициент теплоотдачи за счёт излучения, % |
Чугунные | 100 | 9 | 130 | 70 |
Стальные | 120 | 8-12 | 120 | 50 |
Биметаллические | 150 | 16-35 | 130 | 50 |
Алюминиевые | 200 | 6-16 | 110 | 50 |
Учитывайте, что это усреднённые значения, у конкретной модели они могут отличаться как в меньшую, так и в большую сторону. Кроме того, помните, что далеко не все виды радиаторов подходят для использования в индивидуальных системах отопления. О том, как выбрать батареи для частного дома, мы уже писали ранее.
Рассчитываем необходимое количество секций радиатора
Подходы к расчёту могут быть разными, поэтому выбирайте способ, который для вас будет наиболее удобен и одновременно точен. В зависимости от выбранной методики вам потребуются разные параметры.
По площади
Этот вариант подходит для помещений со стандартной высотой потолков в диапазоне 240–260 см. Такой расчёт в достаточной степени приблизительный, однако на его результаты вполне допустимо опираться.
В соответствии с действующими строительными нормами на 1 кв.м такого помещения должно приходиться не менее 100 Вт мощности обогрева. То есть на пространство в 15 кв.м понадобится 1500 Вт тепла. Теперь берём из документации к выбранному радиатору мощность 1 секции и делим на неё 1500 Вт. Например, если вы присмотрели биметаллическую батарею с мощностью 150 Вт на секцию, то для помещения из примера понадобится 10 секций.
Важно: если при расчёте не получается целое количество, то округлять, как правило, следует в бОльшую сторону. Однако если тепловые потери у помещения меньше средних значений, то допускается округлять количество секций в сторону уменьшения. Если же теплопотери больше среднего, то тепловая производительность радиаторов должна быть больше. В частности, для помещений с неостекленным балконом или с угловым расположением, когда на улицу выходят сразу 2 стены, расчётная мощность должна быть выше в среднем на 20%. Большое значение имеет и характер остекления. Чем толще стеклопакет, тем эффективнее удерживается тепло внутри – следовательно, производительность отопления здесь может быть меньше – об этом мы поговорим ниже.
По объёму помещения
Для получения более точных результатов следует учитывать не только площадь, но и высоту помещения. А если она не стандартная, то включать её в расчёты нужно обязательно. Общий принцип расчётов здесь тот же, только меняются нормативные значения.
Действующие СНиПы рекомендуют выделять на каждый кубометр внутреннего пространства 41 Вт тепломощности. Если же помещение надёжно утеплено снаружи и застеклено многокамерными стеклопакетами, то можно использовать норматив в 34 Вт на 1 кубометр.
Если в нашем помещении площадью 15 кв.м потолки высотой 3 м, то на его обогрев потребуется: 15*3*41 = 1845 Вт тепловой энергии. Теперь делим полученное значение на мощность 1 секции – 1845:150 – и находим, что для такого помещения нужен 12-секционный отопитель.
Учитывайте, что указываемая производителем радиатора тепловая мощность практически всегда соответствует максимальной температуре теплоносителя. На практике же он зачастую холоднее, поэтому и тепла поверхностью батареи будет выделяться меньше. Поэтому если в документации к ней указывается диапазон мощностей, то ориентироваться лучше на нижнюю границу. В этом случае результаты расчёта будут ближе к истине.
Для нестандартного пространства
Приведенные выше формулы работают для стандартных помещений – однако таковыми могут считаться далеко не все квартиры и тем более частные дома и коттеджи. Здесь, чтобы рассчитать количество секций радиатора с достаточной точностью, нужно учесть массу индивидуальных нюансов. Поэтому в формулу “100Вт * площадь вводятся дополнительные коэффициенты, значение которых выбирается с учетом особенностей планировки, изоляции, отделки и т.д. Для большего удобства мы собрали такие поправочные коэффициенты и разделили их по группам.
В зависимости от того, как и чем остеклено помещение, количество радиаторных секций умножается на:
27 – двойные деревянные рамы;
0 – двухкамерный стеклопакет;
85 – трёхкамерный стеклопакет или двухкамерный, заполненный аргоном.
Независимо от типа остекления нужно делать поправку и на отношение его площади к площади помещения:
2 – пропорция 0.5
Влияет и надёжность теплоизоляции стен:
27 – отсутствующая или слабая изоляция;
0 – хорошая защита от потерь тепла, например, двойная кирпичная кладка либо закрытие стен утеплителем;
85 – высокая степень теплоизолированности.
Рассчитывать размеры батарей нужно и с учётом климатических особенностей региона. Для этого нужно ориентироваться на минимальную среднестатистическую температуру за год:
5 – при морозах до -35 oC;
3 – если температура опускается до -25 oC;
1 – если холодает до -20 oC;
9 – если самая низкая недельная температура в году -15 oC;
7 – если зимой средненедельная температура не опускается ниже -10 oC;
Следующий коэффициент учитывает число стен помещения, сопряжённых с улицей:
1 – наружная стена только одна;
2 – с улицей контактируют 2 стены (угловая комната);
3 – у помещения 3 наружные стены;
4 – помещение, все 4 стены которого являются торцевыми (здание без внутреннего деления на помещения).
Потребность помещения в тепле зависит ещё и от того, что находится над ним. Здесь поправочные коэффициенты выглядят следующим образом:
0 – выше находится неотапливаемый чердак;
9 – если сверху расположено тёплое хозпомещение;
8 – если выше обустроено тёплая жилая комната.
Последний коэффициент определяется в зависимости от высоты потолков. Можно рассчитать объём помещения – а можно просто использовать поправочное значение:
0 – если потолки 2.5 м +- 10 см;
05 – для 3-метровых потолков;
1 – если высота помещения 3.5 м;
15 – для 4-метровых перекрытий;
2 – для помещений высотой 4.5 м.
Если комната выходит окнами на север либо северо-восток, то тепловую мощность нужно умножить на 10%. Ещё одна точка активной потери тепла – входная дверь., на неё также нужно закладывать примерно 200 Вт дополнительной тепломощности. При размещении радиатора в стеновой нише добавляем в формулу множитель 1.05 (5%). Если вы планируете закрыть батарею декоративным щитом, то обогрев помещения должен быть на 15–20% мощнее.
Добавляем в формулу “100Вт * площадь” подходящие нам коэффициенты, всё перемножаем, округляем до целого – и получаем нужное количество батарейных секций.
Рассчитываем количество новых радиаторов по старым
В том случае, когда вы не обустраиваете отопительную систему с нуля, а меняете старые радиаторы на новые, то самый простой вариант определить оптимальное количество секций – это ориентироваться на эффективность ваших текущих батарей. Если их производительность не вызывала нареканий, то стоит ориентироваться на такую же теплоотдачу.
Определите модель вашего радиатора – она может быть указана в документации или проштампована на самом отопителе – и найдите значение её посекционной тепловой мощности. Умножьте эту величину на количество секций в вашей батарее – и получите нужную совокупную теплопроизводительность, которая для вас будет оптимальной. Теперь разделите эту величину на мощность отдельной секции той батареи, планирующую установить вместо старых. Полученное число и будет показывать нужное вам количество секций.
Если же раньше в доме было прохладно, то число батарейных отсеков увеличиваем. Или, наоборот, постоянно было душно, то имеет смысл поставить меньше секций.
Рассмотрим на примере, максимально близком к практике. Представим квартиру, в которой установлены 10-секционные чугунные радиаторы модели МС-140 – те самые “гармошки”, знакомые большинству россиян. В новую дизайн-концепцию квартиры они не вписываются, хотя к их производительности претензий не было никаких. Менять их решено на алюминиевые батареи с теплоотдачей в 200 Вт на секцию. Новый МС-140 выдаёт порядка 160 Вт тепла, однако делаем поправку на возраст. Со временем внутренние поверхности секций обрастают отложениями, теплопроизводительность снижается. Поэтому из 160 Вт вычитаем примерно 15% и получаем 136 Вт. Умножаем на количество секций (10) – нужная нам совокупная тепловая мощность составляет 1360 Вт. Делим на 200 Вт алюминиевого “заменителя” – и находим, что нам для обогрева помещения будет достаточно батареи из 7 секций.
Учитываем тепловой напор
Это ещё один важный параметр из сферы термодинамики, который нельзя сбрасывать со счетов при расчете нужного количества секций радиатора. Он отражает разницу между температурами теплоносителя в системе и воздуха в помещении. Та теплоотдача, которую указывают в паспорте радиаторов производители, в большинстве случаев опирается на температуру воды на уровне 80-90-градусные (т.н. высокотемпературные системы отопления отопления) и тепловой напор в 60 градусов. Однако на практике теплоноситель, циркулирующий в трубах, имеет температуру в 50–70 градусов – значит, и тепловой напор падает до 30-50 oC.
В идеальном варианте следует рассчитать реальные значения теплонапора. Для этого нужно сделать следующее:
измерить температуру теплоносителя на входе в радиатор (A);
измерить её же на выходе из батареи (B);
определить оптимальную температуру в помещении (C).
Далее считаем по формуле: 0.5 * (A+B) – C. Для высокотемпературной системы расчёт выглядит следующим образом: 0.5 * (90+70) – 20 = 60. Именно это номинальное значение и учитывается большинством производителей.
Разумеется, точно вычислить реальный тепловой напор очень сложно. Поэтому специалисты советуют сделать запас теплоотдачи примерно в 10–15%. А, чтобы этот запас не перегревал помещение в относительно тёплые дни, можно установить в контур отопления шаровые краны или автоматические термостаты. Выбор таких компонентов сегодня достаточно обширен, чтобы каждый покупатель нашёл оптимальный по цене и функциональности вариант.
Что ещё влияет на эффективность работы радиаторов?
При расчёте радиаторов нужно учитывать и такой неизбежный фактор, как потери тепла. В любом помещении есть точки, через которые внутреннее тепло уходит наружу. В идеале такие потери нужно свести к минимуму, однако делать на них поправки придётся в любом случае – даже через самый толстый стеклопакет определённое количество тепловой энергии всё равно уходит на улицу.
В частном доме таких точек утечки всегда больше. Вот лишь основные из них:
окна и двери – через них может теряться до 30% тепла;
стены – примерно 10–15% потерь;
пол, цокольный этаж – те же 10–15%;
стыки стен и перекрытий – ещё 10–15%;
крыша (актуально для чердачного этажа, мансарды) – до 30%;
дымоход, вентиляционная система – примерно 20–25% теплопотерь.
Про поправочные коэффициенты мы говорили выше. Здесь же отметим, что нужно постараться ещё до расчёта и установки радиаторов по максимуму устранить точки теплопотерь. Это поможет дополнительно уменьшить количество нужных секций. В частности, качественно теплоизолированные дверные и оконные откосы, утеплённая лоджия позволяют исключить 1-2 отсек. Тёплый пол и хорошо изолированные стены – это ещё минус 1–2 секции. Если в доме есть или будет камин, то делайте поправку и на него – он также будет вносить свой вклад в обогрев внутреннего пространства.
Определённое влияние на производительность системы отопления оказывает и метод подключения радиаторов. В зависимости от того, как к ним подводится подающая труба и обратка, будет меняться эффективность теплоотдачи. Если батарея подключается 2-сторонним способом (подача и обратка с противоположных сторон), то теплопроизводительность выглядит следующим образом:
вход сверху, выход снизу – отдаётся 100% тепла;
вход и выход снизу – отдаётся 88% теряется 12%;
вход снизу, выход сверху – отдаётся 80%, теряется 20%.
Таким образом, более эффективно и экономично подключать подающий патрубок сверху, а обратный с противоположной стороны снизу.
Если же прибор-отопитель подключается односторонним способом (оба патрубка подводятся с одной стороны), то здесь коэффициенты тепловой эффективности выглядят следующим образом:
вход сверху, выход снизу – 97%;
вход и выход снизу – 78%;
вход снизу, выход сверху – 78%.
Ещё один важный момент – количество труб. Если отопительный контур составлен из 2 труб, то все батареи в комнате будут получать теплоноситель одинаковой температуры. Если же система однотрубная, то в каждый последующий радиатор будет подаваться более холодная вода. В результате производительность каждого последующего отопителя будет падать. Средние потери для помещений с 6 радиаторами составляют 20% тепломощности. Следовательно, нужно добавлять в формулу расчёта нужного количества секций дополнительные поправки.
Общие выводы
Итак, чтобы правильно рассчитать количество радиаторов отопления, следует учитывать следующие параметры и факторы:
тепловую мощность конкретных батарей;
возможные точки теплопотерь и поправочные коэффициенты на них;
мощность обогрева, при которой вам будет комфортно (ориентируемся на старые радиаторы);
тепловой напор или, как минимум, режим отопления – низко-, средне- или высокотемпературный;
метод подключения отопителей к системе.
Разумеется, можно сделать батареи побольше, “с запасом“ и потом при необходимости уворачивать кран подачи воды. Однако, уделив время расчёту, вы сможете избежать необоснованного перерасхода. А в случае с дорогими импортными батареями экономия может оказаться более чем существенной.